本文整理汇总了Python中torch.nn.init.uniform方法的典型用法代码示例。如果您正苦于以下问题:Python init.uniform方法的具体用法?Python init.uniform怎么用?Python init.uniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.init
的用法示例。
在下文中一共展示了init.uniform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: assert_and_infer_cfg
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def assert_and_infer_cfg(make_immutable=True):
"""Call this function in your script after you have finished setting all cfg
values that are necessary (e.g., merging a config from a file, merging
command line config options, etc.). By default, this function will also
mark the global cfg as immutable to prevent changing the global cfg settings
during script execution (which can lead to hard to debug errors or code
that's harder to understand than is necessary).
"""
if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS:
assert __C.VGG.IMAGENET_PRETRAINED_WEIGHTS, \
"Path to the weight file must not be empty to load imagenet pertrained resnets."
if version.parse(torch.__version__) < version.parse('0.4.0'):
__C.PYTORCH_VERSION_LESS_THAN_040 = True
# create alias for PyTorch version less than 0.4.0
init.uniform_ = init.uniform
init.normal_ = init.normal
init.constant_ = init.constant
nn.GroupNorm = mynn.GroupNorm
if make_immutable:
cfg.immutable(True)
示例2: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def __init__(self, input_size, activation=nn.Tanh(),
method="dot"):
super(AttnScore, self).__init__()
self.activation = activation
self.input_size = input_size
self.method = method
if method == "general":
self.linear = nn.Linear(input_size, input_size)
init.uniform(self.linear.weight.data, -0.005, 0.005)
elif method == "concat":
self.linear_1 = nn.Linear(input_size*2, input_size)
self.linear_2 = nn.Linear(input_size, 1)
init.uniform(self.linear_1.weight.data, -0.005, 0.005)
init.uniform(self.linear_2.weight.data, -0.005, 0.005)
elif method == "tri_concat":
self.linear = nn.Linear(input_size*3, 1)
init.uniform(self.linear.weight.data, -0.005, 0.005)
示例3: forward_test
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def forward_test(self, input_features, adj):
self.max_num_nodes = 4
adj_data = torch.zeros(self.max_num_nodes, self.max_num_nodes)
adj_data[:4, :4] = torch.FloatTensor([[1,1,0,0], [1,1,1,0], [0,1,1,1], [0,0,1,1]])
adj_features = torch.Tensor([2,3,3,2])
adj_data1 = torch.zeros(self.max_num_nodes, self.max_num_nodes)
adj_data1 = torch.FloatTensor([[1,1,1,0], [1,1,0,1], [1,0,1,0], [0,1,0,1]])
adj_features1 = torch.Tensor([3,3,2,2])
S = self.edge_similarity_matrix(adj_data, adj_data1, adj_features, adj_features1,
self.deg_feature_similarity)
# initialization strategies
init_corr = 1 / self.max_num_nodes
init_assignment = torch.ones(self.max_num_nodes, self.max_num_nodes) * init_corr
#init_assignment = torch.FloatTensor(4, 4)
#init.uniform(init_assignment)
assignment = self.mpm(init_assignment, S)
#print('Assignment: ', assignment)
# matching
row_ind, col_ind = scipy.optimize.linear_sum_assignment(-assignment.numpy())
print('row: ', row_ind)
print('col: ', col_ind)
permuted_adj = self.permute_adj(adj_data, row_ind, col_ind)
print('permuted: ', permuted_adj)
adj_recon_loss = self.adj_recon_loss(permuted_adj, adj_data1)
print(adj_data1)
print('diff: ', adj_recon_loss)
示例4: weights_init_normal
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_normal(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.uniform(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.uniform(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例5: weights_init_xavier
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_xavier(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例6: weights_init_kaiming
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例7: weights_init_orthogonal
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_orthogonal(m):
classname = m.__class__.__name__
print(classname)
if classname.find('Conv') != -1:
init.orthogonal(m.weight.data, gain=1)
elif classname.find('Linear') != -1:
init.orthogonal(m.weight.data, gain=1)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例8: assert_and_infer_cfg
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def assert_and_infer_cfg(make_immutable=True):
"""Call this function in your script after you have finished setting all cfg
values that are necessary (e.g., merging a config from a file, merging
command line config options, etc.). By default, this function will also
mark the global cfg as immutable to prevent changing the global cfg settings
during script execution (which can lead to hard to debug errors or code
that's harder to understand than is necessary).
"""
if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN:
__C.RPN.RPN_ON = True
if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON:
__C.TEST.PRECOMPUTED_PROPOSALS = False
if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS:
assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \
"Path to the weight file must not be empty to load imagenet pertrained resnets."
if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS:
__C.MODEL.SHARE_RES5 = True
if version.parse(torch.__version__) < version.parse('0.4.0'):
__C.PYTORCH_VERSION_LESS_THAN_040 = True
# create alias for PyTorch version less than 0.4.0
init.uniform_ = init.uniform
init.normal_ = init.normal
init.constant_ = init.constant
nn.GroupNorm = mynn.GroupNorm
if make_immutable:
cfg.immutable(True)
示例9: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def __init__(self, d_in, d_out, bias=True, out_norm=False):
super().__init__(d_in, d_out, bias)
self.out_norm = out_norm
stdv = 1. / math.sqrt(self.weight.size(1))
init.uniform(self.weight, -stdv, stdv)
if bias:
self.bias.data.zero_()
示例10: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
if isinstance(m, nn.ConvTranspose2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
# init_deconv_bilinear(m.weight)
示例11: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
if isinstance(m, nn.ConvTranspose2d):
if m.bias is not None:
init.uniform(m.bias)
init.xavier_uniform(m.weight)
示例12: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def __init__(self, with_bn=False, fp16=False, rgb_max=255., div_flow=20):
super(FlowNet2CS, self).__init__()
self.with_bn = with_bn
self.fp16 = fp16
self.rgb_max = rgb_max
self.div_flow = div_flow
self.channelnorm = ChannelNorm()
# First Block (FlowNetC)
self.flownetc = FlowNetC(with_bn=with_bn, fp16=fp16)
self.upsample1 = nn.Upsample(scale_factor=4, mode='bilinear')
self.resample1 = (nn.Sequential(tofp32(), Resample2d(), tofp16())
if fp16 else Resample2d())
# Block (FlowNetS1)
self.flownets_1 = FlowNetS(with_bn=with_bn)
self.upsample2 = nn.Upsample(scale_factor=4, mode='bilinear')
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.bias is not None:
nn_init.uniform(m.bias)
nn_init.xavier_uniform(m.weight)
if isinstance(m, nn.ConvTranspose2d):
if m.bias is not None:
nn_init.uniform(m.bias)
nn_init.xavier_uniform(m.weight)
示例13: weights_init_normal
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_normal(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.uniform(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.uniform(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例14: weights_init_xavier
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_xavier(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('Linear') != -1:
init.xavier_normal(m.weight.data, gain=1)
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例15: weights_init_kaiming
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import uniform [as 别名]
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm2d') != -1:
init.uniform(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)