本文整理汇总了Python中torch.nn.init.orthogonal_方法的典型用法代码示例。如果您正苦于以下问题:Python init.orthogonal_方法的具体用法?Python init.orthogonal_怎么用?Python init.orthogonal_使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.init
的用法示例。
在下文中一共展示了init.orthogonal_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type, init_gain):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
net.apply(init_func)
示例2: weights_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def weights_init(m):
'''
Code from https://gist.github.com/jeasinema/ed9236ce743c8efaf30fa2ff732749f5
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
示例3: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
# this will apply to each layer
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
if init_type=='normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
#print('initialize network with %s' % init_type)
net.apply(init_func)
示例4: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
示例5: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for G''s initialized parameters: %d' % self.param_count)
# Note on this forward function: we pass in a y vector which has
# already been passed through G.shared to enable easy class-wise
# interpolation later. If we passed in the one-hot and then ran it through
# G.shared in this forward function, it would be harder to handle.
# NOTE: The z vs y dichotomy here is for compatibility with not-y
示例6: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for G''s initialized parameters: %d' % self.param_count)
# Note on this forward function: we pass in a y vector which has
# already been passed through G.shared to enable easy class-wise
# interpolation later. If we passed in the one-hot and then ran it through
# G.shared in this forward function, it would be harder to handle.
示例7: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
示例8: reset_parameters
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def reset_parameters(self):
"""
Initialize parameters following the way proposed in the paper.
"""
init.orthogonal_(self.weight_ih.data)
init.orthogonal_(self.alpha_weight_ih.data)
weight_hh_data = torch.eye(self.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, 3)
self.weight_hh.data.set_(weight_hh_data)
alpha_weight_hh_data = torch.eye(self.hidden_size)
alpha_weight_hh_data = alpha_weight_hh_data.repeat(1, 1)
self.alpha_weight_hh.data.set_(alpha_weight_hh_data)
# The bias is just set to zero vectors.
if self.use_bias:
init.constant_(self.bias.data, val=0)
init.constant_(self.alpha_bias.data, val=0)
示例9: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', init_gain=0.02):
def init_func(m):
name = m.__class__.__name__
if hasattr(m, 'weight') and ('Conv' in name or 'Linear' in name):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError(
f'initialization method [{init_type}] is not implemented')
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif 'BatchNorm2d' in name:
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
net.apply(init_func)
示例10: init_weights_multi
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights_multi(m, init_type, gain=1.):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
# ---------------- Pretty sure the following functions/classes are common ----------------
示例11: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
# this will apply to each layer
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
if init_type=='normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print("EAST <==> Prepare <==> Init Network'{}' <==> Begin".format(init_type))
net.apply(init_func)
示例12: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='xavier', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
示例13: reset_parameters
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def reset_parameters(self):
if self.use_leaf_rnn:
init.kaiming_normal_(self.leaf_rnn_cell.weight_ih.data)
init.orthogonal_(self.leaf_rnn_cell.weight_hh.data)
init.constant_(self.leaf_rnn_cell.bias_ih.data, val=0)
init.constant_(self.leaf_rnn_cell.bias_hh.data, val=0)
# Set forget bias to 1
self.leaf_rnn_cell.bias_ih.data.chunk(4)[1].fill_(1)
if self.bidirectional:
init.kaiming_normal_(self.leaf_rnn_cell_bw.weight_ih.data)
init.orthogonal_(self.leaf_rnn_cell_bw.weight_hh.data)
init.constant_(self.leaf_rnn_cell_bw.bias_ih.data, val=0)
init.constant_(self.leaf_rnn_cell_bw.bias_hh.data, val=0)
# Set forget bias to 1
self.leaf_rnn_cell_bw.bias_ih.data.chunk(4)[1].fill_(1)
else:
init.kaiming_normal_(self.word_linear.weight.data)
init.constant_(self.word_linear.bias.data, val=0)
self.treelstm_layer.reset_parameters()
init.normal_(self.comp_query.data, mean=0, std=0.01)
示例14: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
# this will apply to each layer
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
if init_type=='normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
#print('initialize network with %s' % init_type)
net.apply(init_func)
############################################
# save checkpoint and resume
############################################
示例15: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import orthogonal_ [as 别名]
def init_weights(net, init_type='normal', init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>