本文整理汇总了Python中torch.nn.init.normal_方法的典型用法代码示例。如果您正苦于以下问题:Python init.normal_方法的具体用法?Python init.normal_怎么用?Python init.normal_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.init
的用法示例。
在下文中一共展示了init.normal_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _initialize_weights_norm
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def _initialize_weights_norm(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.normal_(m.weight, std=0.01)
if m.bias is not None: # mobilenet conv2d doesn't add bias
init.constant_(m.bias, 0.0)
# last layer of these block don't have Relu
init.normal_(self.model1_1[8].weight, std=0.01)
init.normal_(self.model1_2[8].weight, std=0.01)
init.normal_(self.model2_1[12].weight, std=0.01)
init.normal_(self.model3_1[12].weight, std=0.01)
init.normal_(self.model4_1[12].weight, std=0.01)
init.normal_(self.model5_1[12].weight, std=0.01)
init.normal_(self.model6_1[12].weight, std=0.01)
init.normal_(self.model2_2[12].weight, std=0.01)
init.normal_(self.model3_2[12].weight, std=0.01)
init.normal_(self.model4_2[12].weight, std=0.01)
init.normal_(self.model5_2[12].weight, std=0.01)
init.normal_(self.model6_2[12].weight, std=0.01)
示例2: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def __init__(self, dim_in):
super().__init__()
self.dim_in = dim_in
self.cls_on = cfg.FAST_RCNN.CLS_ON
self.reg_on = cfg.FAST_RCNN.REG_ON
if self.cls_on:
self.cls_score = nn.Linear(self.dim_in, cfg.MODEL.NUM_CLASSES)
init.normal_(self.cls_score.weight, std=0.01)
init.constant_(self.cls_score.bias, 0)
# self.avgpool = nn.AdaptiveAvgPool2d(1)
if self.reg_on:
if cfg.FAST_RCNN.CLS_AGNOSTIC_BBOX_REG: # bg and fg
self.bbox_pred = nn.Linear(self.dim_in, 4 * 2)
else:
self.bbox_pred = nn.Linear(self.dim_in, 4 * cfg.MODEL.NUM_CLASSES)
init.normal_(self.bbox_pred.weight, std=0.001)
init.constant_(self.bbox_pred.bias, 0)
示例3: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def init_weights(model):
if isinstance(model, nn.Linear):
if model.weight is not None:
init.kaiming_uniform_(model.weight.data)
if model.bias is not None:
init.normal_(model.bias.data)
elif isinstance(model, nn.BatchNorm1d):
if model.weight is not None:
init.normal_(model.weight.data, mean=1, std=0.02)
if model.bias is not None:
init.constant_(model.bias.data, 0)
elif isinstance(model, nn.BatchNorm2d):
if model.weight is not None:
init.normal_(model.weight.data, mean=1, std=0.02)
if model.bias is not None:
init.constant_(model.bias.data, 0)
elif isinstance(model, nn.BatchNorm3d):
if model.weight is not None:
init.normal_(model.weight.data, mean=1, std=0.02)
if model.bias is not None:
init.constant_(model.bias.data, 0)
else:
pass
示例4: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def init_weights(net, init_type, init_gain):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
net.apply(init_func)
示例5: weights_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def weights_init(m):
'''
Code from https://gist.github.com/jeasinema/ed9236ce743c8efaf30fa2ff732749f5
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
示例6: dgmg_message_weight_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def dgmg_message_weight_init(m):
"""
This is similar as the function above where we initialize linear layers from a normal distribution with std
1./10 as suggested by the author. This should only be used for the message passing functions, i.e. fe's in the
paper.
"""
def _weight_init(m):
if isinstance(m, nn.Linear):
init.normal_(m.weight.data, std=1./10)
init.normal_(m.bias.data, std=1./10)
else:
raise ValueError('Expected the input to be of type nn.Linear!')
if isinstance(m, nn.ModuleList):
for layer in m:
layer.apply(_weight_init)
else:
m.apply(_weight_init)
示例7: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def init_weights(m, mode='MSRAFill'):
import torch.nn as nn
import torch.nn.init as init
from torchlab.nnlib.init import XavierFill, MSRAFill
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
if mode == 'GaussianFill':
init.normal_(m.weight, std=0.001)
elif mode == 'MSRAFill':
MSRAFill(m.weight)
else:
raise ValueError
if m.bias is not None:
init.constant_(m.bias, 0)
if isinstance(m, nn.Linear):
XavierFill(m.weight)
init.constant_(m.bias, 0)
示例8: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
# this will apply to each layer
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
if init_type=='normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
#print('initialize network with %s' % init_type)
net.apply(init_func)
示例9: _weight_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def _weight_init(self, m):
if (m is None) or (not hasattr(m, "weight")):
return
if (m.bias is not None) and hasattr(m, "bias"):
m.bias.data.zero_()
if isinstance(m, Conv2d):
self.init_fc(m.weight)
# m.bias.data.zero_()
elif isinstance(m, Linear):
self.init_fc(m.weight)
# m.bias.data.zero_()
elif isinstance(m, ConvTranspose2d):
self.init_fc(m.weight)
# m.bias.data.zero_()
elif isinstance(m, InstanceNorm2d):
init.normal_(m.weight, 1.0, 0.02)
# m.bias.data.fill_(0)
elif isinstance(m, BatchNorm2d):
init.normal_(m.weight, 1.0, 0.02)
# m.bias.data.fill_(0)
else:
pass
示例10: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func)
示例11: init_weights
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
def init_func(m):
# this will apply to each layer
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
if init_type=='normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
#print('initialize network with %s' % init_type)
net.apply(init_func)
############################################
# save checkpoint and resume
############################################
示例12: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def __init__(self):
super().__init__()
self.embed = nn.Parameter(torch.FloatTensor(hp.token_num, hp.E // hp.num_heads))
d_q = hp.E // 2
d_k = hp.E // hp.num_heads
# self.attention = MultiHeadAttention(hp.num_heads, d_model, d_q, d_v)
self.attention = MultiHeadAttention(query_dim=d_q, key_dim=d_k, num_units=hp.E, num_heads=hp.num_heads)
init.normal_(self.embed, mean=0, std=0.5)
示例13: initialize_weight
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def initialize_weight(self):
for m in self.modules():
#print('need check init')
if isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight)
#init.normal_(m.weight, std = 0.01)
if m.bias is not None:
init.constant_(m.bias, 0.0)
else:
try:init.constant_(m.weight,0.0)
except:pass
示例14: initilization
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def initilization(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight)
#init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0.0)
else:
try:init.constant_(m.weight,0.0)
except:pass
示例15: initi
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal_ [as 别名]
def initi(self):
#init.kaiming_normal_(self.con_layer.weight, a=0, mode='fan_in', nonlinearity='relu')
init.normal_(self.con_layer.weight, std=0.01)
if self.con_layer.bias is not None:
init.constant_(self.con_layer.bias, 0.0)