当前位置: 首页>>代码示例>>Python>>正文


Python init.normal方法代码示例

本文整理汇总了Python中torch.nn.init.normal方法的典型用法代码示例。如果您正苦于以下问题:Python init.normal方法的具体用法?Python init.normal怎么用?Python init.normal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.init的用法示例。


在下文中一共展示了init.normal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: define_D

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def define_D(input_nc, ndf, which_model_netD,
             n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', gpu_ids=[]):
    netD = None
    use_gpu = len(gpu_ids) > 0
    norm_layer = get_norm_layer(norm_type=norm)

    if use_gpu:
        assert(torch.cuda.is_available())
    if which_model_netD == 'basic':
        netD = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
    elif which_model_netD == 'n_layers':
        netD = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
    else:
        raise NotImplementedError('Discriminator model name [%s] is not recognized' %
                                  which_model_netD)
    if use_gpu:
        netD.cuda(gpu_ids[0])
    init_weights(netD, init_type=init_type)
    return netD 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:21,代码来源:networks_other.py

示例2: reset_parameters

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def reset_parameters(self,
                         init_shared=lambda x: normal(x, std=0.1),
                         init_importance=lambda x: normal(x, std=0.0005)):
        """Resets the trainable parameters."""
        def set_constant_row(parameters, iRow=0, value=0):
            """Return `parameters` with row `iRow` as s constant `value`."""
            data = parameters.data
            data[iRow, :] = value
            return torch.nn.Parameter(data, requires_grad=parameters.requires_grad)

        np.random.seed(self.seed)
        if self.seed is not None:
            torch.manual_seed(self.seed)

        self.shared_embeddings.weight = init_shared(self.shared_embeddings.weight)
        self.importance_weights.weight = init_importance(self.importance_weights.weight)

        if self.padding_idx is not None:
            # Unfortunately has to set weight to 0 even when paddingIdx = 0
            self.shared_embeddings.weight = set_constant_row(self.shared_embeddings.weight)
            self.importance_weights.weight = set_constant_row(self.importance_weights.weight)

        self.shared_embeddings.weight.requires_grad = self.train_sharedEmbed
        self.importance_weights.weight.requires_grad = self.train_weight 
开发者ID:YannDubs,项目名称:Hash-Embeddings,代码行数:26,代码来源:embedding.py

示例3: define_D

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def define_D(input_nc, ndf, which_model_netD,
             n_layers_D=3, norm='batch', use_sigmoid=False, init_type='normal', gpu_ids=[]):
    netD = None
    use_gpu = len(gpu_ids) > 0
    norm_layer = get_norm_layer(norm_type=norm)

    if use_gpu:
        assert(torch.cuda.is_available())
    if which_model_netD == 'basic':
        netD = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
    elif which_model_netD == 'n_layers':
        netD = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
    elif which_model_netD == 'pixel':
        netD = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids)
    else:
        raise NotImplementedError('Discriminator model name [%s] is not recognized' %
                                  which_model_netD)
    if use_gpu:
        netD.cuda(gpu_ids[0])
    init_weights(netD, init_type=init_type)
    return netD 
开发者ID:joelmoniz,项目名称:DepthNets,代码行数:23,代码来源:networks.py

示例4: init_params

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def init_params(net):
    '''Init layer parameters.'''
    for m in net.modules():
        if isinstance(m, nn.Conv2d):
            init.kaiming_normal(m.weight, mode='fan_out')
            if m.bias:
                init.constant(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            init.constant(m.weight, 1)
            init.constant(m.bias, 0)
        elif isinstance(m, nn.Linear):
            init.normal(m.weight, std=1e-3)
            if m.bias:
                init.constant(m.bias, 0)


#_, term_width = os.popen('stty size', 'r').read().split()
# term_width = int(term_width) 
开发者ID:leehomyc,项目名称:mixup_pytorch,代码行数:20,代码来源:utils.py

示例5: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def __init__(self, dim, dropout=0.2, slope=0.0):
        super(SDAE, self).__init__()
        self.in_dim = dim[0]
        self.nlayers = len(dim)-1
        self.reluslope = slope
        self.enc, self.dec = [], []
        for i in range(self.nlayers):
            self.enc.append(nn.Linear(dim[i], dim[i+1]))
            setattr(self, 'enc_{}'.format(i), self.enc[-1])
            self.dec.append(nn.Linear(dim[i+1], dim[i]))
            setattr(self, 'dec_{}'.format(i), self.dec[-1])
        self.base = []
        for i in range(self.nlayers):
            self.base.append(nn.Sequential(*self.enc[:i]))
        self.dropmodule1 = nn.Dropout(p=dropout)
        self.dropmodule2 = nn.Dropout(p=dropout)
        self.loss = nn.MSELoss(size_average=True)

        # initialization
        for m in self.modules():
            if isinstance(m, nn.Linear):
                init.normal(m.weight, std=1e-2)
                if m.bias.data is not None:
                    init.constant(m.bias, 0) 
开发者ID:shahsohil,项目名称:DCC,代码行数:26,代码来源:SDAE.py

示例6: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def __init__(self, dim, slope=0.0):
        super(extractSDAE, self).__init__()
        self.in_dim = dim[0]
        self.nlayers = len(dim)-1
        self.reluslope = slope
        self.enc, self.dec = [], []
        for i in range(self.nlayers):
            self.enc.append(nn.Linear(dim[i], dim[i+1]))
            setattr(self, 'enc_{}'.format(i), self.enc[-1])
            self.dec.append(nn.Linear(dim[i+1], dim[i]))
            setattr(self, 'dec_{}'.format(i), self.dec[-1])
        self.base = []
        for i in range(self.nlayers):
            self.base.append(nn.Sequential(*self.enc[:i]))

        # initialization
        for m in self.modules():
            if isinstance(m, nn.Linear):
                init.normal(m.weight, std=1e-2)
                if m.bias.data is not None:
                    init.constant(m.bias, 0) 
开发者ID:shahsohil,项目名称:DCC,代码行数:23,代码来源:extractSDAE.py

示例7: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(FeatureExtraction, self).__init__()
        downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
        model = [downconv, nn.ReLU(True), norm_layer(ngf)]
        for i in range(n_layers):
            in_ngf = 2**i * ngf if 2**i * ngf < 512 else 512
            out_ngf = 2**(i+1) * ngf if 2**i * ngf < 512 else 512
            downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
            model += [downconv, nn.ReLU(True)]
            model += [norm_layer(out_ngf)]
        model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
        model += [norm_layer(512)]
        model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
        
        self.model = nn.Sequential(*model)
        init_weights(self.model, init_type='normal') 
开发者ID:sergeywong,项目名称:cp-vton,代码行数:18,代码来源:networks.py

示例8: weights_init

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def weights_init(init_type='xavier'):
    def init_fun(m):
        classname = m.__class__.__name__
        if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
            if init_type == 'normal':
                init.normal(m.weight.data, 0.0, 0.02)
            elif init_type == 'xavier':
                init.xavier_normal(m.weight.data, gain=math.sqrt(2))
            elif init_type == 'kaiming':
                init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal(m.weight.data, gain=math.sqrt(2))
            elif init_type == 'default':
                pass
            else:
                assert 0, "Unsupported initialization: {}".format(init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant(m.bias.data, 0.0)
        elif (classname.find('Norm') == 0):
            if hasattr(m, 'weight') and m.weight is not None:
                init.constant(m.weight.data, 1.0)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant(m.bias.data, 0.0)
    return init_fun 
开发者ID:Xiaoming-Yu,项目名称:DMIT,代码行数:26,代码来源:network.py

示例9: define_G

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def define_G(input_nc, output_nc, ngf, which_model_netG, norm='batch', use_dropout=False, init_type='normal', gpu_ids=[]):
    netG = None
    use_gpu = len(gpu_ids) > 0
    norm_layer = get_norm_layer(norm_type=norm)

    if use_gpu:
        assert(torch.cuda.is_available())

    if which_model_netG == 'reflrmnetwork':
        netG = ReflRmNetwork(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, gpu_ids=gpu_ids)
    else:
        raise NotImplementedError('Generator model name [%s] is not recognized' % which_model_netG)
    if len(gpu_ids) > 0:
        netG.cuda(gpu_ids[0])
    init_weights(netG, init_type=init_type)
    return netG 
开发者ID:csqiangwen,项目名称:Single-Image-Reflection-Removal-Beyond-Linearity,代码行数:18,代码来源:networks.py

示例10: init_params

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def init_params(net):
    '''Init layer parameters.'''
    for m in net.modules():
        if isinstance(m, nn.Conv2d):
            init.kaiming_normal(m.weight, mode='fan_out')
            if m.bias:
                init.constant(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            init.constant(m.weight, 1)
            init.constant(m.bias, 0)
        elif isinstance(m, nn.Linear):
            init.normal(m.weight, std=1e-3)
            if m.bias:
                init.constant(m.bias, 0) 
开发者ID:zhunzhong07,项目名称:Random-Erasing,代码行数:16,代码来源:misc.py

示例11: generate_dataset

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def generate_dataset(true_w, true_b):
    num_examples = 1000

    features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
    # 真实 label
    labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
    # 添加噪声
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    # 展示下分布
    plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
    plt.show()

    return features, labels 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:15,代码来源:4_linear_regression_torch.py

示例12: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            init.normal(m.weight.data, 0.0, gain)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal(m.weight.data, 1.0, gain)
            init.constant(m.bias.data, 0.0)

    print('Network initialized with weights sampled from N(0,0.02).')
    net.apply(init_func) 
开发者ID:arnab39,项目名称:cycleGAN-PyTorch,代码行数:15,代码来源:ops.py

示例13: reset_params

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def reset_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant(m.weight, 1)
                init.constant(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant(m.bias, 0) 
开发者ID:gddingcs,项目名称:Dispersion-based-Clustering,代码行数:15,代码来源:resnet.py

示例14: weights_init_normal

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def weights_init_normal(m):
    classname = m.__class__.__name__
    #print(classname)
    if classname.find('Conv') != -1:
        init.normal(m.weight.data, 0.0, 0.02)
    elif classname.find('Linear') != -1:
        init.normal(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        init.normal(m.weight.data, 1.0, 0.02)
        init.constant(m.bias.data, 0.0) 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:12,代码来源:networks_other.py

示例15: weights_init_xavier

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import normal [as 别名]
def weights_init_xavier(m):
    classname = m.__class__.__name__
    #print(classname)
    if classname.find('Conv') != -1:
        init.xavier_normal(m.weight.data, gain=1)
    elif classname.find('Linear') != -1:
        init.xavier_normal(m.weight.data, gain=1)
    elif classname.find('BatchNorm') != -1:
        init.normal(m.weight.data, 1.0, 0.02)
        init.constant(m.bias.data, 0.0) 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:12,代码来源:networks_other.py


注:本文中的torch.nn.init.normal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。