当前位置: 首页>>代码示例>>Python>>正文


Python init.kaiming_normal_方法代码示例

本文整理汇总了Python中torch.nn.init.kaiming_normal_方法的典型用法代码示例。如果您正苦于以下问题:Python init.kaiming_normal_方法的具体用法?Python init.kaiming_normal_怎么用?Python init.kaiming_normal_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.init的用法示例。


在下文中一共展示了init.kaiming_normal_方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: initialize_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def initialize_weights(net_l, scale=1):
    if not isinstance(net_l, list):
        net_l = [net_l]
    for net in net_l:
        for m in net.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale  # for residual block
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias.data, 0.0) 
开发者ID:cszn,项目名称:KAIR,代码行数:20,代码来源:network_msrresnet.py

示例2: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type, init_gain):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)
    net.apply(init_func) 
开发者ID:ranahanocka,项目名称:MeshCNN,代码行数:20,代码来源:networks.py

示例3: weights_init_He_normal

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def weights_init_He_normal(m):
    classname = m.__class__.__name__
#     print classname
    if classname.find('Transpose') != -1:
        m.weight.data.normal_(0.0, 0.001)
        if not m.bias is None:
            m.bias.data.zero_()
    elif classname.find('Conv') != -1:
        # std = np.sqrt(2. / (m.kernel_size[0] * m.kernel_size[1] * m.out_channels))
        # m.weight.data.normal_(0.0, std)
        init.kaiming_normal_(m.weight.data, a=0, mode='fan_out')
        if not m.bias is None:
            m.bias.data.zero_()
    elif classname.find('BatchNorm') != -1:
        m.weight.data.fill_(1.)
        if not m.bias is None:
            m.bias.data.zero_()
    elif classname.find('Linear') != -1:
        m.weight.data.normal_(0.0, 0.001)
        if not m.bias is None:
            m.bias.data.zero_() 
开发者ID:guochengqian,项目名称:TENet,代码行数:23,代码来源:loss.py

示例4: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    #print('initialize network with %s' % init_type)
    net.apply(init_func) 
开发者ID:songdejia,项目名称:Siamese-RPN-pytorch,代码行数:25,代码来源:train_siamrpn.py

示例5: weights_init_kaiming

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def weights_init_kaiming(m, scale=1):
    classname = m.__class__.__name__
    if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
        if classname != "MeanShift":
            print('initializing [%s] ...' % classname)
            init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            m.weight.data *= scale
            if m.bias is not None:
                m.bias.data.zero_()
    elif isinstance(m, (nn.Linear)):
        init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
        m.weight.data *= scale
        if m.bias is not None:
            m.bias.data.zero_()
    elif isinstance(m, (nn.BatchNorm2d)):
        init.constant_(m.weight.data, 1.0)
        m.weight.data *= scale
        init.constant_(m.bias.data, 0.0) 
开发者ID:Paper99,项目名称:SRFBN_CVPR19,代码行数:20,代码来源:__init__.py

示例6: init_model

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_model(self, scale=0.1):
        # Common practise for initialization.
        for layer in self.netG.modules():
            if isinstance(layer, nn.Conv2d):
                init.kaiming_normal_(layer.weight, a=0, mode='fan_in')
                layer.weight.data *= scale  # for residual block
                if layer.bias is not None:
                    layer.bias.data.zero_()
            elif isinstance(layer, nn.Linear):
                init.kaiming_normal_(layer.weight, a=0, mode='fan_in')
                layer.weight.data *= scale
                if layer.bias is not None:
                    layer.bias.data.zero_()
            elif isinstance(layer, nn.BatchNorm2d):
                init.constant_(layer.weight, 1)
                init.constant_(layer.bias.data, 0.0) 
开发者ID:yuanjunchai,项目名称:IKC,代码行数:18,代码来源:C_model.py

示例7: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func) 
开发者ID:Lotayou,项目名称:densebody_pytorch,代码行数:24,代码来源:networks.py

示例8: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
	def init_func(m):
		classname = m.__class__.__name__
		if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
			if init_type == 'normal':
				init.normal_(m.weight.data, 0.0, gain)
			elif init_type == 'xavier':
				init.xavier_normal_(m.weight.data, gain=gain)
			elif init_type == 'kaiming':
				init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
			elif init_type == 'orthogonal':
				init.orthogonal_(m.weight.data, gain=gain)
			else:
				raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
			if hasattr(m, 'bias') and m.bias is not None:
				init.constant_(m.bias.data, 0.0)
		elif classname.find('BatchNorm2d') != -1:
			init.normal_(m.weight.data, 1.0, gain)
			init.constant_(m.bias.data, 0.0)
	
	print('initialize network with %s' % init_type)
	net.apply(init_func) 
开发者ID:Luodian,项目名称:MADAN,代码行数:24,代码来源:networks.py

示例9: init_params

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_params(self):
        '''
        Function to initialze the parameters
        '''
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0) 
开发者ID:xiaoyufenfei,项目名称:Efficient-Segmentation-Networks,代码行数:18,代码来源:Model.py

示例10: get_weight_init_fn

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def get_weight_init_fn( activation_fn  ):
    """get weight_initialization function according to activation_fn
    Notes
    -------------------------------------
    if activation_fn requires arguments, use partial() to wrap activation_fn
    """
    fn = activation_fn
    if hasattr( activation_fn , 'func' ):
        fn = activation_fn.func

    if  fn == nn.LeakyReLU:
        negative_slope = 0 
        if hasattr( activation_fn , 'keywords'):
            if activation_fn.keywords.get('negative_slope') is not None:
                negative_slope = activation_fn.keywords['negative_slope']
        if hasattr( activation_fn , 'args'):
            if len( activation_fn.args) > 0 :
                negative_slope = activation_fn.args[0]
        return partial( kaiming_normal_ ,  a = negative_slope )
    elif fn == nn.ReLU or fn == nn.PReLU :
        return partial( kaiming_normal_ , a = 0 )
    else:
        return xavier_normal_
    return 
开发者ID:iwtw,项目名称:SRN-DeblurNet,代码行数:26,代码来源:layers.py

示例11: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type='normal', init_gain=0.02):
    def init_func(m):
        name = m.__class__.__name__
        if hasattr(m, 'weight') and ('Conv' in name or 'Linear' in name):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError(
                    f'initialization method [{init_type}] is not implemented')
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif 'BatchNorm2d' in name:
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    net.apply(init_func) 
开发者ID:S-aiueo32,项目名称:srntt-pytorch,代码行数:24,代码来源:__init__.py

示例12: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    #print('initialize network with %s' % init_type)
    net.apply(init_func)


############################################
# save checkpoint and resume
############################################ 
开发者ID:songdejia,项目名称:DeepLab_v3_plus,代码行数:30,代码来源:util.py

示例13: initi

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def initi(self):
        #init.kaiming_normal_(self.con_layer.weight, a=0, mode='fan_in', nonlinearity='relu')
        init.normal_(self.con_layer.weight, std=0.01)
        if self.con_layer.bias is not None:  
            init.constant_(self.con_layer.bias, 0.0) 
开发者ID:HaiyangLiu1997,项目名称:Pytorch-Networks,代码行数:7,代码来源:OpenPose2015.py

示例14: __init__

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def __init__(self, input_feature_size, embeding_fea_size=1024, dropout=0.5):
        super(self.__class__, self).__init__()

        # embeding
        self.embeding_fea_size = embeding_fea_size
        self.embeding = nn.Linear(input_feature_size, embeding_fea_size)
        self.embeding_bn = nn.BatchNorm1d(embeding_fea_size)
        init.kaiming_normal_(self.embeding.weight, mode='fan_out')
        init.constant_(self.embeding.bias, 0)
        init.constant_(self.embeding_bn.weight, 1)
        init.constant_(self.embeding_bn.bias, 0)
        self.drop = nn.Dropout(dropout) 
开发者ID:gddingcs,项目名称:Dispersion-based-Clustering,代码行数:14,代码来源:end2end.py

示例15: init_weights

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal_ [as 别名]
def init_weights(net, init_type='normal', init_gain=0.02):
    """Initialize network weights.

    Parameters:
        net (network)   -- network to be initialized
        init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        init_gain (float)    -- scaling factor for normal, xavier and orthogonal.

    We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
    work better for some applications. Feel free to try yourself.
    """
    def init_func(m):  # define the initialization function
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:  # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func)  # apply the initialization function <init_func> 
开发者ID:Mingtzge,项目名称:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代码行数:34,代码来源:networks.py


注:本文中的torch.nn.init.kaiming_normal_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。