本文整理汇总了Python中torch.nn.init.kaiming_normal方法的典型用法代码示例。如果您正苦于以下问题:Python init.kaiming_normal方法的具体用法?Python init.kaiming_normal怎么用?Python init.kaiming_normal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.init
的用法示例。
在下文中一共展示了init.kaiming_normal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def __init__(self, *layers):
'''
layers : list of int
There are dimensions in the sequence
'''
super(FullyConnectedNet, self).__init__()
self.linear = nn.ModuleList()
self.bn = nn.ModuleList()
self.relu = nn.ModuleList()
pre_dim = layers[0]
self.nLayers = 0
for dim in layers[1:]:
self.linear.append(nn.Linear(pre_dim, dim, bias=False))
self.bn.append(nn.BatchNorm1d(dim))
self.relu.append(nn.ReLU(inplace=True))
init.kaiming_normal(self.linear[-1].weight)
self.nLayers += 1
pre_dim = dim
示例2: init_params
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
#_, term_width = os.popen('stty size', 'r').read().split()
# term_width = int(term_width)
示例3: reset_params
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def reset_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_in')
if m.bias is not None:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.kaiming_normal(m.weight, mode='fan_in')
if m.bias is not None:
init.constant(m.bias, 0)
示例4: weights_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def weights_init(init_type='xavier'):
def init_fun(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
if init_type == 'normal':
init.normal(m.weight.data, 0.0, 0.02)
elif init_type == 'xavier':
init.xavier_normal(m.weight.data, gain=math.sqrt(2))
elif init_type == 'kaiming':
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal(m.weight.data, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant(m.bias.data, 0.0)
elif (classname.find('Norm') == 0):
if hasattr(m, 'weight') and m.weight is not None:
init.constant(m.weight.data, 1.0)
if hasattr(m, 'bias') and m.bias is not None:
init.constant(m.bias.data, 0.0)
return init_fun
示例5: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def __init__(self, f, c, is_multi, is_reg, ps=None, xtra_fc=None, xtra_cut=0, custom_head=None, pretrained=True):
self.f,self.c,self.is_multi,self.is_reg,self.xtra_cut = f,c,is_multi,is_reg,xtra_cut
if xtra_fc is None: xtra_fc = [512]
if ps is None: ps = [0.25]*len(xtra_fc) + [0.5]
self.ps,self.xtra_fc = ps,xtra_fc
if f in model_meta: cut,self.lr_cut = model_meta[f]
else: cut,self.lr_cut = 0,0
cut-=xtra_cut
layers = cut_model(f(pretrained), cut)
self.nf = num_features(layers)*2
if not custom_head: layers += [AdaptiveConcatPool2d(), Flatten()]
self.top_model = nn.Sequential(*layers)
n_fc = len(self.xtra_fc)+1
if not isinstance(self.ps, list): self.ps = [self.ps]*n_fc
if custom_head: fc_layers = [custom_head]
else: fc_layers = self.get_fc_layers()
self.n_fc = len(fc_layers)
self.fc_model = to_gpu(nn.Sequential(*fc_layers))
if not custom_head: apply_init(self.fc_model, kaiming_normal)
self.model = to_gpu(nn.Sequential(*(layers+fc_layers)))
示例6: init_params
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def init_params(net):
'''Init layer parameters.'''
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=1e-3)
if m.bias:
init.constant(m.bias, 0)
示例7: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def __init__(self, nFeats_in=None, nFeats_out=None, layer_list=None,
dropout=0, bias=False):
super(ClassifyLoss, self).__init__()
self.dropout = dropout
if layer_list is None:
self.list = False
self.l1 = nn.Linear(nFeats_in, nFeats_out, bias=bias)
if self.dropout > 0:
self.l1dropout = nn.Dropout(self.dropout, inplace=True)
init.kaiming_normal(self.l1.weight)
self.l2 = nn.Linear(nFeats_out, 2)
init.kaiming_normal(self.l2.weight)
self.bn1 = nn.BatchNorm1d(nFeats_out)
self.relu = nn.ReLU(inplace=True)
else:
self.list = True
self.hids = nn.ModuleList()
self.bns = nn.ModuleList()
if self.dropout > 0:
self.dropout_l = nn.Dropout(inplace=True)
for i in range(len(layer_list) - 1):
self.hids.append(nn.Linear(layer_list[i], layer_list[i+1], bias=False))
init.kaiming_normal(self.hids[-1].weight)
self.bns.append(nn.BatchNorm1d(layer_list[i+1]))
self.lout = nn.Linear(layer_list[-1], 2)
init.kaiming_normal(self.lout.weight)
self.crossentropy = nn.CrossEntropyLoss()
self.score = None
示例8: init_weights_he
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def init_weights_he(model):
if isinstance(model, nn.Conv2d):
init.kaiming_normal(model.weight)
init.constant(model.bias, 0)
示例9: reset_params
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def reset_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bias is not None:
init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant(m.weight, 1)
init.constant(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal(m.weight, std=0.001)
if m.bias is not None:
init.constant(m.bias, 0)
示例10: weights_init_kaiming
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def weights_init_kaiming(m):
classname = m.__class__.__name__
#print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm') != -1:
init.normal(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例11: weights_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def weights_init(self, m):
for key in m.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal(m.state_dict()[key], mode='fan_out')
if 'bn' in key:
m.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
m.state_dict()[key][...] = 0
示例12: weights_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def weights_init(m):
for key in m.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal(m.state_dict()[key], mode='fan_out')
if 'bn' in key:
m.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
m.state_dict()[key][...] = 0
示例13: weights_init_kaiming
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm2d') != -1:
init.normal(m.weight.data, 1.0, 0.02)
init.constant(m.bias.data, 0.0)
示例14: __init__
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def __init__(self, cardinality, depth, num_classes, widen_factor=4, dropRate=0):
""" Constructor
Args:
cardinality: number of convolution groups.
depth: number of layers.
num_classes: number of classes
widen_factor: factor to adjust the channel dimensionality
"""
super(CifarResNeXt, self).__init__()
self.cardinality = cardinality
self.depth = depth
self.block_depth = (self.depth - 2) // 9
self.widen_factor = widen_factor
self.num_classes = num_classes
self.output_size = 64
self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor]
self.conv_1_3x3 = nn.Conv2d(3, 64, 3, 1, 1, bias=False)
self.bn_1 = nn.BatchNorm2d(64)
self.stage_1 = self.block('stage_1', self.stages[0], self.stages[1], 1)
self.stage_2 = self.block('stage_2', self.stages[1], self.stages[2], 2)
self.stage_3 = self.block('stage_3', self.stages[2], self.stages[3], 2)
self.classifier = nn.Linear(1024, num_classes)
init.kaiming_normal(self.classifier.weight)
for key in self.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal(self.state_dict()[key], mode='fan_out')
if 'bn' in key:
self.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
self.state_dict()[key][...] = 0
示例15: _weights_init
# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import kaiming_normal [as 别名]
def _weights_init(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight)