当前位置: 首页>>代码示例>>Python>>正文


Python init._calculate_fan_in_and_fan_out方法代码示例

本文整理汇总了Python中torch.nn.init._calculate_fan_in_and_fan_out方法的典型用法代码示例。如果您正苦于以下问题:Python init._calculate_fan_in_and_fan_out方法的具体用法?Python init._calculate_fan_in_and_fan_out怎么用?Python init._calculate_fan_in_and_fan_out使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.init的用法示例。


在下文中一共展示了init._calculate_fan_in_and_fan_out方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: xavier_uniform_n_

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def xavier_uniform_n_(w: Tensor, gain: float = 1., n: int = 4) -> None:
    """
    Xavier initializer for parameters that combine multiple matrices in one
    parameter for efficiency. This is e.g. used for GRU and LSTM parameters,
    where e.g. all gates are computed at the same time by 1 big matrix.

    :param w: parameter
    :param gain: default 1
    :param n: default 4
    """
    with torch.no_grad():
        fan_in, fan_out = _calculate_fan_in_and_fan_out(w)
        assert fan_out % n == 0, "fan_out should be divisible by n"
        fan_out //= n
        std = gain * math.sqrt(2.0 / (fan_in + fan_out))
        a = math.sqrt(3.0) * std
        nn.init.uniform_(w, -a, a)


# pylint: disable=too-many-branches 
开发者ID:joeynmt,项目名称:joeynmt,代码行数:22,代码来源:initialization.py

示例2: xavier_uniform_n_

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def xavier_uniform_n_(w, gain=1., n=4):
    """
    Xavier initializer for parameters that combine multiple matrices in one
    parameter for efficiency. This is e.g. used for GRU and LSTM parameters,
    where e.g. all gates are computed at the same time by 1 big matrix.
    :param w:
    :param gain:
    :param n:
    :return:
    """
    with torch.no_grad():
        fan_in, fan_out = _calculate_fan_in_and_fan_out(w)
        assert fan_out % n == 0, "fan_out should be divisible by n"
        fan_out = fan_out // n
        std = gain * math.sqrt(2.0 / (fan_in + fan_out))
        a = math.sqrt(3.0) * std
        nn.init.uniform_(w, -a, a) 
开发者ID:bastings,项目名称:interpretable_predictions,代码行数:19,代码来源:util.py

示例3: reset_parameters

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def reset_parameters(self):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound) 
开发者ID:rtqichen,项目名称:residual-flows,代码行数:8,代码来源:lipschitz.py

示例4: reset_parameters

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def reset_parameters(self, zero_init=False):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if zero_init:
            # normalize cannot handle zero weight in some cases.
            self.weight.data.div_(1000)
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound) 
开发者ID:rtqichen,项目名称:residual-flows,代码行数:11,代码来源:mixed_lipschitz.py

示例5: reset_parameters

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def reset_parameters(self):
        n = self.in_channels
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound) 
开发者ID:ruinmessi,项目名称:ASFF,代码行数:9,代码来源:deform_conv2d.py

示例6: reset_parameters

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def reset_parameters(self):
        init.kaiming_normal_(self._weight, a=math.sqrt(5))
        fan_in, _ = init._calculate_fan_in_and_fan_out(self._weight)
        bound = 4 / math.sqrt(fan_in)
        init.uniform_(self._bias, -bound, bound)
        if self.over_param:
            with torch.no_grad(): self._bias.set_(self.manifold.expmap0(self._bias)) 
开发者ID:emilemathieu,项目名称:pvae,代码行数:9,代码来源:manifold_layers.py

示例7: xavier_normal_small_init_

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def xavier_normal_small_init_(tensor, gain=1.):
    # type: (Tensor, float) -> Tensor
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + 4*fan_out))

    return _no_grad_normal_(tensor, 0., std) 
开发者ID:ardigen,项目名称:MAT,代码行数:8,代码来源:utils.py

示例8: xavier_uniform_small_init_

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def xavier_uniform_small_init_(tensor, gain=1.):
    # type: (Tensor, float) -> Tensor
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + 4*fan_out))
    a = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviation

    return _no_grad_uniform_(tensor, -a, a) 
开发者ID:ardigen,项目名称:MAT,代码行数:9,代码来源:utils.py

示例9: init_pytorch_defaults

# 需要导入模块: from torch.nn import init [as 别名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 别名]
def init_pytorch_defaults(m, version='041'):
    '''
    Apply default inits from pytorch version 0.4.1 or 1.0.0.

    pytorch 1.0 default inits are wonky :-(
    '''
    if version == '041':
        # print('init.pt041: {0:s}'.format(str(m.weight.data.size())))
        if isinstance(m, nn.Linear):
            stdv = 1. / math.sqrt(m.weight.size(1))
            m.weight.data.uniform_(-stdv, stdv)
            if m.bias is not None:
                m.bias.data.uniform_(-stdv, stdv)
        elif isinstance(m, nn.Conv2d):
            n = m.in_channels
            for k in m.kernel_size:
                n *= k
            stdv = 1. / math.sqrt(n)
            m.weight.data.uniform_(-stdv, stdv)
            if m.bias is not None:
                m.bias.data.uniform_(-stdv, stdv)
        elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
            if m.affine:
                m.weight.data.uniform_()
                m.bias.data.zero_()
        else:
            assert False
    elif version == '100':
        # print('init.pt100: {0:s}'.format(str(m.weight.data.size())))
        if isinstance(m, nn.Linear):
            init.kaiming_uniform_(m.weight, a=math.sqrt(5))
            if m.bias is not None:
                fan_in, _ = init._calculate_fan_in_and_fan_out(m.weight)
                bound = 1 / math.sqrt(fan_in)
                init.uniform_(m.bias, -bound, bound)
        elif isinstance(m, nn.Conv2d):
            n = m.in_channels
            init.kaiming_uniform_(m.weight, a=math.sqrt(5))
            if m.bias is not None:
                fan_in, _ = init._calculate_fan_in_and_fan_out(m.weight)
                bound = 1 / math.sqrt(fan_in)
                init.uniform_(m.bias, -bound, bound)
        elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
            if m.affine:
                m.weight.data.uniform_()
                m.bias.data.zero_()
        else:
            assert False
    elif version == 'custom':
        # print('init.custom: {0:s}'.format(str(m.weight.data.size())))
        if isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
            init.normal_(m.weight.data, mean=1, std=0.02)
            init.constant_(m.bias.data, 0)
        else:
            assert False
    else:
        assert False 
开发者ID:Philip-Bachman,项目名称:amdim-public,代码行数:59,代码来源:utils.py


注:本文中的torch.nn.init._calculate_fan_in_and_fan_out方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。