本文整理汇总了Python中torch.nn.functional.threshold方法的典型用法代码示例。如果您正苦于以下问题:Python functional.threshold方法的具体用法?Python functional.threshold怎么用?Python functional.threshold使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.threshold方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _threshold
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def _threshold(raw,input, threshold, value, inplace=False):
# for threshold or relu
if threshold==0 and value==0:
x = raw(input,threshold, value, inplace)
bottom_blobs=[log.blobs(input)]
name = log.add_layer(name='relu')
log.add_blobs([x], name='relu_blob')
layer = caffe_net.Layer_param(name=name, type='ReLU',
bottom=bottom_blobs, top=[log.blobs(x)])
log.cnet.add_layer(layer)
return x
if value!=0:
raise NotImplemented("value !=0 not implemented in caffe")
x=raw(input,input, threshold, value, inplace)
bottom_blobs=[log.blobs(input)]
layer_name=log.add_layer(name='threshold')
top_blobs=log.add_blobs([x],name='threshold_blob')
layer=caffe_net.Layer_param(name=layer_name,type='Threshold',
bottom=bottom_blobs,top=top_blobs)
layer.param.threshold_param.threshold = threshold
log.cnet.add_layer(layer)
return x
示例2: _threshold
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def _threshold(raw, input, threshold, value, inplace=False):
# for threshold or relu
if threshold == 0 and value == 0:
x = raw(input, threshold, value, inplace)
bottom_blobs = [log.blobs(input)]
name = log.add_layer(name='relu')
log.add_blobs([x], name='relu_blob')
layer = caffe_net.Layer_param(name=name, type='ReLU',
bottom=bottom_blobs, top=[log.blobs(x)])
log.cnet.add_layer(layer)
return x
if value != 0:
raise NotImplemented("value !=0 not implemented in caffe")
x = raw(input, input, threshold, value, inplace)
bottom_blobs = [log.blobs(input)]
layer_name = log.add_layer(name='threshold')
top_blobs = log.add_blobs([x], name='threshold_blob')
layer = caffe_net.Layer_param(name=layer_name, type='Threshold',
bottom=bottom_blobs, top=top_blobs)
layer.param.threshold_param.threshold = threshold
log.cnet.add_layer(layer)
return x
示例3: hard_sigmoid
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def hard_sigmoid(x):
"""
Computes element-wise hard sigmoid of x.
See e.g. https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py#L279
"""
x = (0.2 * x) + 0.5
x = F.threshold(-x, -1, -1)
x = F.threshold(-x, 0, 0)
return x
示例4: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def forward(self, x, encoder_padding_mask):
residual = x
x = self.maybe_layer_norm(0, x, before=True)
x, _ = self.self_attn(query=x, key=x, value=x, key_padding_mask=encoder_padding_mask)
if self.fuse_dropout_add and self.training :
x = fused_dropout_add(x, residual, self.dropout)
else :
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.maybe_layer_norm(0, x, after=True)
residual = x
x = self.maybe_layer_norm(1, x, before=True)
if self.fuse_relu_dropout :
x = fused_relu_dropout(self.fc1(x), self.relu_dropout)
else :
x = F.threshold(self.fc1(x),0,0)
x = F.dropout(x, p=self.relu_dropout, training=self.training)
x = self.fc2(x)
if self.fuse_dropout_add and self.training :
x = fused_dropout_add(x, residual, self.dropout)
else :
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.maybe_layer_norm(1, x, after=True)
return x
示例5: _relu
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def _relu(raw, input, inplace=False):
# for threshold or prelu
x = raw(input, False)
name = log.add_layer(name='relu')
log.add_blobs([x], name='relu_blob')
layer = caffe_net.Layer_param(name=name, type='ReLU',
bottom=[log.blobs(input)], top=[log.blobs(x)])
log.cnet.add_layer(layer)
return x
示例6: _prelu
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def _prelu(raw, input, weight):
# for threshold or prelu
x = raw(input, weight)
bottom_blobs=[log.blobs(input)]
name = log.add_layer(name='prelu')
log.add_blobs([x], name='prelu_blob')
layer = caffe_net.Layer_param(name=name, type='PReLU',
bottom=bottom_blobs, top=[log.blobs(x)])
if weight.size()[0]==1:
layer.param.prelu_param.channel_shared=True
layer.add_data(weight.cpu().data.numpy()[0])
else:
layer.add_data(weight.cpu().data.numpy())
log.cnet.add_layer(layer)
return x
示例7: relu
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def relu(inputs):
return F.threshold(inputs, 0, 0, inplace=True)
示例8: find_tensor_peak_batch
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def find_tensor_peak_batch(heatmap, radius, downsample, threshold = 0.000001):
assert heatmap.dim() == 3, 'The dimension of the heatmap is wrong : {}'.format(heatmap.size())
assert radius > 0 and isinstance(radius, numbers.Number), 'The radius is not ok : {}'.format(radius)
num_pts, H, W = heatmap.size(0), heatmap.size(1), heatmap.size(2)
assert W > 1 and H > 1, 'To avoid the normalization function divide zero'
# find the approximate location:
score, index = torch.max(heatmap.view(num_pts, -1), 1)
index_w = (index % W).float()
index_h = (index / W).float()
def normalize(x, L):
return -1. + 2. * x.data / (L-1)
boxes = [index_w - radius, index_h - radius, index_w + radius, index_h + radius]
boxes[0] = normalize(boxes[0], W)
boxes[1] = normalize(boxes[1], H)
boxes[2] = normalize(boxes[2], W)
boxes[3] = normalize(boxes[3], H)
affine_parameter = torch.zeros((num_pts, 2, 3))
affine_parameter[:,0,0] = (boxes[2]-boxes[0])/2
affine_parameter[:,0,2] = (boxes[2]+boxes[0])/2
affine_parameter[:,1,1] = (boxes[3]-boxes[1])/2
affine_parameter[:,1,2] = (boxes[3]+boxes[1])/2
# extract the sub-region heatmap
theta = MU.np2variable(affine_parameter, heatmap.is_cuda, False)
grid_size = torch.Size([num_pts, 1, radius*2+1, radius*2+1])
grid = F.affine_grid(theta, grid_size)
sub_feature = F.grid_sample(heatmap.unsqueeze(1), grid).squeeze(1)
sub_feature = F.threshold(sub_feature, threshold, np.finfo(float).eps)
X = MU.np2variable(torch.arange(-radius, radius+1), heatmap.is_cuda, False).view(1, 1, radius*2+1)
Y = MU.np2variable(torch.arange(-radius, radius+1), heatmap.is_cuda, False).view(1, radius*2+1, 1)
sum_region = torch.sum(sub_feature.view(num_pts,-1),1)
x = torch.sum((sub_feature*X).view(num_pts,-1),1) / sum_region + index_w
y = torch.sum((sub_feature*Y).view(num_pts,-1),1) / sum_region + index_h
x = x * downsample + downsample / 2.0 - 0.5
y = y * downsample + downsample / 2.0 - 0.5
return torch.stack([x, y],1), score
示例9: _prelu
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def _prelu(raw, input, weight):
# for threshold or prelu
x = raw(input, weight)
bottom_blobs = [log.blobs(input)]
name = log.add_layer(name='prelu')
log.add_blobs([x], name='prelu_blob')
layer = caffe_net.Layer_param(name=name, type='PReLU',
bottom=bottom_blobs, top=[log.blobs(x)])
if weight.size()[0] == 1:
layer.param.prelu_param.channel_shared = True
layer.add_data(weight.cpu().data.numpy()[0])
else:
layer.add_data(weight.cpu().data.numpy())
log.cnet.add_layer(layer)
return x
示例10: test_threshold
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def test_threshold(self):
inp = torch.randn(1, 8, 32, 32, device='cuda', dtype=self.dtype)
output = F.threshold(inp, 6, 6, inplace=False)
示例11: test_softplus
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def test_softplus(self):
inp = torch.randn(1, 3, 32, 32, device='cuda', dtype=self.dtype)
output = F.softplus(inp, beta=1, threshold=20)
示例12: relu
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def relu(input):
return F.threshold(input, 0, 0, inplace=True)
示例13: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def forward(self, x):
x = (self.slope * x) + self.offset
x = F.threshold(-x, -1, -1)
x = F.threshold(-x, 0, 0)
return x
示例14: __init__
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def __init__(self):
super(LayerThresholdTest, self).__init__()
self.threshold = random.random()
self.value = self.threshold + random.random()
self.thresh = nn.Threshold(self.threshold, self.value)
示例15: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import threshold [as 别名]
def forward(self, x):
from torch.nn import functional as F
return F.threshold(x, threshold=self.threshold, value=self.value)