本文整理汇总了Python中torch.nn.functional.softmax方法的典型用法代码示例。如果您正苦于以下问题:Python functional.softmax方法的具体用法?Python functional.softmax怎么用?Python functional.softmax使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.softmax方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_tf2torch
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def test_tf2torch(tf_model,torch_model,input_shape, num_rand_inp=10, precision=10**-2):
"""
Checks consistency of torch and tf models before generating attacks
:param tf_model: copied tf model
:param torch_model: torch model to be transferred to tf
:param input_shape: Format Channels X Height X Width
:param num_rand_inp: number of random inputs to test consistency on
:return: raises error if the outputs are not consistent
"""
torch_model.eval()
rand_x = torch.rand(num_rand_inp,input_shape[0],input_shape[1],input_shape[2])
tf_op = tf_model.predict(rand_x.numpy())
torch_op = F.softmax(torch_model(Variable(rand_x))).data.numpy()
assert tf_op.shape == torch_op.shape, "Mismatch of dimensions of the outputs from tf and torch models"
assert np.linalg.norm(torch_op-tf_op)/np.linalg.norm(torch_op)<=num_rand_inp*precision, "Outputs of the torch and tensorflow models" \
"do not agree"
pass
示例2: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, encoding, lengths):
lengths = Variable(torch.LongTensor(lengths))
if torch.cuda.is_available():
lengths = lengths.cuda()
if self.method == 'mean':
encoding_pad = nn.utils.rnn.pack_padded_sequence(encoding, lengths.data.tolist(), batch_first=True)
encoding = nn.utils.rnn.pad_packed_sequence(encoding_pad, batch_first=True, padding_value=0)[0]
lengths = lengths.float().view(-1, 1)
return encoding.sum(1) / lengths, None
elif self.method == 'max':
return encoding.max(1) # [bsz, in_dim], [bsz, in_dim] (position)
elif self.method == 'attn':
size = encoding.size() # [bsz, len, in_dim]
x_flat = encoding.contiguous().view(-1, size[2]) # [bsz*len, in_dim]
hbar = self.tanh(self.ws1(x_flat)) # [bsz*len, attn_hid]
alphas = self.ws2(hbar).view(size[0], size[1]) # [bsz, len]
alphas = nn.utils.rnn.pack_padded_sequence(alphas, lengths.data.tolist(), batch_first=True)
alphas = nn.utils.rnn.pad_packed_sequence(alphas, batch_first=True, padding_value=-1e8)[0]
alphas = functional.softmax(alphas, dim=1) # [bsz, len]
alphas = alphas.view(size[0], 1, size[1]) # [bsz, 1, len]
return torch.bmm(alphas, encoding).squeeze(1), alphas # [bsz, in_dim], [bsz, len]
elif self.method == 'last':
return torch.cat([encoding[i][lengths[i] - 1] for i in range(encoding.size(0))], dim=0), None
示例3: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, query, key):
querys = self.W_query(query) # [N, T_q, num_units]
keys = self.W_key(key) # [N, T_k, num_units]
values = self.W_value(key)
split_size = self.num_units // self.num_heads
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
# score = softmax(QK^T / (d_k ** 0.5))
scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
scores = scores / (self.key_dim ** 0.5)
scores = F.softmax(scores, dim=3)
# out = score * V
out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
return out
示例4: get_entropy
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def get_entropy(self, pred, label):
n, c, h, w = pred.size()
label = label.unsqueeze(3).long()
pred = F.softmax(pred, 1).permute(0, 2, 3, 1)
one_hot_label = ((torch.arange(c)).cuda() == label).float()
if self.eps == 0:
prior = 0
else:
if self.priorType == 'gaussian':
tensor = (torch.arange(c).cuda() - label).float()
prior = NormalDist(tensor, c / 10)
elif self.priorType == 'uniform':
prior = 1 / (c-1)
smoothed_label = (1 - self.eps) * one_hot_label + self.eps * prior * (1 - one_hot_label)
entropy = smoothed_label * safe_log(pred) + (1 - smoothed_label) * safe_log(1 - pred)
return -entropy
示例5: calculate_outputs_and_gradients
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def calculate_outputs_and_gradients(inputs, model, target_label_idx, cuda=False):
# do the pre-processing
predict_idx = None
gradients = []
for input in inputs:
input = pre_processing(input, cuda)
output = model(input)
output = F.softmax(output, dim=1)
if target_label_idx is None:
target_label_idx = torch.argmax(output, 1).item()
index = np.ones((output.size()[0], 1)) * target_label_idx
index = torch.tensor(index, dtype=torch.int64)
if cuda:
index = index.cuda()
output = output.gather(1, index)
# clear grad
model.zero_grad()
output.backward()
gradient = input.grad.detach().cpu().numpy()[0]
gradients.append(gradient)
gradients = np.array(gradients)
return gradients, target_label_idx
示例6: _visualize_params
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def _visualize_params(logits_pis, means, log_scales, channel):
"""
:param logits_pis: NCKHW
:param means: NCKHW
:param log_scales: NCKHW
:param channel: int
:return:
"""
assert logits_pis.shape == means.shape == log_scales.shape
logits_pis = logits_pis[0, channel, ...].detach()
means = means[0, channel, ...].detach()
log_scales = log_scales[0, channel, ...].detach()
pis = torch.softmax(logits_pis, dim=0) # Kdim==0 -> KHW
mixtures = ft.lconcat(
zip(_iter_Kdim_normalized(pis, normalize=False),
_iter_Kdim_normalized(means),
_iter_Kdim_normalized(log_scales)))
grid = vis.grid.prep_for_grid(mixtures)
img = torchvision.utils.make_grid(grid, nrow=3)
return img
示例7: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
示例8: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, x):
# x: (batch, sentence_length)
x = self.embed(x)
# x: (batch, sentence_length, embed_dim)
# TODO init embed matrix with pre-trained
x = x.unsqueeze(1)
# x: (batch, 1, sentence_length, embed_dim)
x1 = self.conv_and_pool(x, self.conv11) # (batch, kernel_num)
x2 = self.conv_and_pool(x, self.conv12) # (batch, kernel_num)
x3 = self.conv_and_pool(x, self.conv13) # (batch, kernel_num)
x = torch.cat((x1, x2, x3), 1) # (batch, 3 * kernel_num)
x = self.dropout(x)
logit = F.log_softmax(self.fc1(x), dim=1)
# logit = F.softmax(self.fc1(x), dim=1)
# logit = self.fc1(x)
return logit
示例9: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, decoder_hidden, encoder_outputs):
"""
Args:
decoder_hidden: <torch.FloatTensor>, shape(B,H)
previous hidden state of the last layer in decoder
encoder_outputs: <torch.FloatTensor>, shape(T,B,H)
encoder outputs
Returns:
normalized attention weights: <torch.FloatTensor>, shape(B,T)
"""
max_len = encoder_outputs.size(0)
H = decoder_hidden.repeat(max_len, 1, 1).transpose(0, 1) # (B,T,H)
encoder_outputs = encoder_outputs.transpose(0, 1) # (B,T,H)
attn_energies = self.score(H, encoder_outputs) # (B,T)
return F.softmax(attn_energies).unsqueeze(1) # (B,1,T)
示例10: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, input_set):
"""
Args:
input_set: shape N X D
Returns:
output_vec: shape 1 X 2D
"""
num_element = input_set.shape[0]
element_dim = input_set.shape[1]
assert element_dim == self.element_dim
hidden = torch.zeros(1, 2 * self.element_dim).to(input_set.device)
memory = torch.zeros(1, self.element_dim).to(input_set.device)
for tt in range(self.num_step_encoder):
hidden, memory = self.LSTM(hidden, memory)
energy = torch.tanh(torch.mm(hidden, self.W_1) + input_set).mm(self.W_2)
att_weight = F.softmax(energy, dim=0)
read = (input_set * att_weight).sum(dim=0, keepdim=True)
hidden = torch.cat([hidden, read], dim=1)
return hidden
示例11: get_z_scores
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def get_z_scores(self, df_test):
"""Get softmaxed rationale importances.
:param df_test: dataframe containing test data labels, tokens, masks,
and counts
:type df_test: pd.DataFrame
:return:
z_scores: softmaxed rationale scores with dimension
(batch_size, length)
:rtype: torch.FloatTensor
"""
batch_dict = generate_data(df_test, self.use_cuda)
x_tokens = batch_dict["x"]
mask = batch_dict["m"]
z_scores, _, _ = self.generator(x_tokens, mask)
z_scores = F.softmax(z_scores, dim=-1)
return z_scores
示例12: _region_classification
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def _region_classification(self, fc7):
cls_score = self.cls_score_net(fc7)
cls_pred = torch.max(cls_score, 1)[1] # the prediction class of each bbox
cls_prob = F.softmax(cls_score)
bbox_pred = self.bbox_pred_net(fc7)
bbox_prob = torch.stack([F.softmax(bbox_pred[:,i]) for i in range(bbox_pred.size(1))], 1)
fuse_prob = cls_prob.mul(bbox_prob)
image_prob = fuse_prob.sum(0,keepdim=True)
self._predictions["cls_pred"] = cls_pred
self._predictions["cls_prob"] = cls_prob
self._predictions["bbox_prob"] = bbox_prob
self._predictions["fuse_prob"] = fuse_prob
self._predictions["image_prob"] = image_prob
return cls_prob, bbox_prob, fuse_prob, image_prob
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:18,代码来源:network.py
示例13: _region_classification_fast
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def _region_classification_fast(self, fc7):
cls_score = self.cls_score_net_fast(fc7)
cls_pred = torch.max(cls_score, 1)[1]
cls_prob = F.softmax(cls_score)
bbox_pred = self.bbox_pred_net_fast(fc7)
self._predictions["cls_score_fast"] = cls_score
self._predictions["cls_pred_fast"] = cls_pred
self._predictions["cls_prob_fast"] = cls_prob
self._predictions["bbox_pred_fast"] = bbox_pred
return cls_prob, bbox_pred
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:14,代码来源:network.py
示例14: attention
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def attention(query, key, value, mask=None, dropout=None):
"""Compute 'Scaled Dot Product Attention' """
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
示例15: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import softmax [as 别名]
def forward(self, x1, x2, x2_mask):
'''
Input:
x1: batch x word_num1 x dim
x2: batch x word_num2 x dim
Output:
scores: batch x word_num1 x word_num2
'''
# x1 = dropout(x1, p = dropout_p, training = self.training)
# x2 = dropout(x2, p = dropout_p, training = self.training)
x1_rep = x1
x2_rep = x2
batch = x1_rep.size(0)
word_num1 = x1_rep.size(1)
word_num2 = x2_rep.size(1)
dim = x1_rep.size(2)
if self.correlation_func == 2 or self.correlation_func == 3:
x1_rep = self.linear(x1_rep.contiguous().view(-1, dim)).view(batch, word_num1, self.hidden_size) # Wx1
x2_rep = self.linear(x2_rep.contiguous().view(-1, dim)).view(batch, word_num2, self.hidden_size) # Wx2
if self.correlation_func == 3:
x1_rep = F.relu(x1_rep)
x2_rep = F.relu(x2_rep)
x1_rep = x1_rep * self.diagonal.expand_as(x1_rep)
# x1_rep is (Wx1)D or Relu(Wx1)D
# x1_rep: batch x word_num1 x dim (corr=1) or hidden_size (corr=2,3)
if self.correlation_func == 4:
x2_rep = self.linear(x2_rep.contiguous().view(-1, dim)).view(batch, word_num2, dim) # Wx2
if self.correlation_func == 5:
x1_rep = self.linear(x1_rep.contiguous().view(-1, dim)).view(batch, word_num1, self.hidden_size) # Wx1
x2_rep = self.linear(x2_rep.contiguous().view(-1, dim)).view(batch, word_num2, self.hidden_size) # Wx2
x1_rep = F.relu(x1_rep)
x2_rep = F.relu(x2_rep)
scores = x1_rep.bmm(x2_rep.transpose(1, 2))
empty_mask = x2_mask.eq(0).expand_as(scores)
scores.data.masked_fill_(empty_mask.data, -float('inf'))
# softmax
alpha_flat = F.softmax(scores, dim=-1)
return alpha_flat