当前位置: 首页>>代码示例>>Python>>正文


Python functional.smooth_l1_loss方法代码示例

本文整理汇总了Python中torch.nn.functional.smooth_l1_loss方法的典型用法代码示例。如果您正苦于以下问题:Python functional.smooth_l1_loss方法的具体用法?Python functional.smooth_l1_loss怎么用?Python functional.smooth_l1_loss使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.smooth_l1_loss方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compute_rpn_bbox_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_rpn_bbox_loss(rpn_target_deltas, rpn_pred_deltas, rpn_match):
    """
    :param rpn_target_deltas:   (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))).
    Uses 0 padding to fill in unsed bbox deltas.
    :param rpn_pred_deltas: predicted deltas from RPN. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd))))
    :param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
    :return: loss: torch 1D tensor.
    """
    if 0 not in torch.nonzero(rpn_match == 1).size():

        indices = torch.nonzero(rpn_match == 1).squeeze(1)
        # Pick bbox deltas that contribute to the loss
        rpn_pred_deltas = rpn_pred_deltas[indices]
        # Trim target bounding box deltas to the same length as rpn_bbox.
        target_deltas = rpn_target_deltas[:rpn_pred_deltas.size()[0], :]
        # Smooth L1 loss
        loss = F.smooth_l1_loss(rpn_pred_deltas, target_deltas)
    else:
        loss = torch.FloatTensor([0]).cuda()

    return loss 
开发者ID:MIC-DKFZ,项目名称:medicaldetectiontoolkit,代码行数:23,代码来源:mrcnn.py

示例2: compute_mrcnn_bbox_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_mrcnn_bbox_loss(mrcnn_target_deltas, mrcnn_pred_deltas, target_class_ids):
    """
    :param mrcnn_target_deltas: (n_sampled_rois, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
    :param mrcnn_pred_deltas: (n_sampled_rois, n_classes, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
    :param target_class_ids: (n_sampled_rois)
    :return: loss: torch 1D tensor.
    """
    if 0 not in torch.nonzero(target_class_ids > 0).size():
        positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0]
        positive_roi_class_ids = target_class_ids[positive_roi_ix].long()
        target_bbox = mrcnn_target_deltas[positive_roi_ix, :].detach()
        pred_bbox = mrcnn_pred_deltas[positive_roi_ix, positive_roi_class_ids, :]
        loss = F.smooth_l1_loss(pred_bbox, target_bbox)
    else:
        loss = torch.FloatTensor([0]).cuda()

    return loss 
开发者ID:MIC-DKFZ,项目名称:medicaldetectiontoolkit,代码行数:19,代码来源:mrcnn.py

示例3: calc_priorities

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def calc_priorities(self, target_net, transitions, alpha=0.6, gamma=0.999,
                        device=torch.device("cpu")):
        batch = utils.Transition(*zip(*transitions))

        next_state_batch = torch.stack(batch.next_state).to(device)
        state_batch = torch.stack(batch.state).to(device)
        action_batch = torch.stack(batch.action).to(device)
        reward_batch = torch.stack(batch.reward).to(device)
        done_batch = torch.stack(batch.done).to(device)

        state_action_values = self.forward(state_batch).gather(1, action_batch)
        next_action = self.forward(next_state_batch).argmax(dim=1).unsqueeze(1)
        next_state_values = target_net(next_state_batch).gather(1, next_action).detach()
        expected_state_action_values = (next_state_values * gamma * (1.0 - done_batch)) \
                                       + reward_batch
        delta = F.smooth_l1_loss(state_action_values, expected_state_action_values, reduce=False)
        prios = (delta.abs() + 1e-5).pow(alpha)
        return delta, prios.detach() 
开发者ID:neka-nat,项目名称:distributed_rl,代码行数:20,代码来源:models.py

示例4: loss_per_level

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def loss_per_level(self, estDisp, gtDisp):
        N, C, H, W = estDisp.shape
        scaled_gtDisp = gtDisp
        scale = 1.0
        if gtDisp.shape[-2] != H or gtDisp.shape[-1] != W:
            # compute scale per level and scale gtDisp
            scale = gtDisp.shape[-1] / (W * 1.0)
            scaled_gtDisp = gtDisp / scale
            scaled_gtDisp = self.scale_func(scaled_gtDisp, (H, W))

        # mask for valid disparity
        # (start disparity, max disparity / scale)
        # Attention: the invalid disparity of KITTI is set as 0, be sure to mask it out
        mask = (scaled_gtDisp > self.start_disp) & (scaled_gtDisp < (self.max_disp / scale))
        if mask.sum() < 1.0:
            print('SmoothL1 loss: there is no point\'s disparity is in ({},{})!'.format(self.start_disp,
                                                                                        self.max_disp / scale))
            loss = (torch.abs(estDisp - scaled_gtDisp) * mask.float()).mean()
            return loss

        # smooth l1 loss
        loss = F.smooth_l1_loss(estDisp[mask], scaled_gtDisp[mask], reduction='mean')

        return loss 
开发者ID:DeepMotionAIResearch,项目名称:DenseMatchingBenchmark,代码行数:26,代码来源:smooth_l1_loss.py

示例5: finish_episode

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def finish_episode():
    R = 0
    saved_actions = model.saved_actions
    value_loss = 0
    rewards = []
    for r in model.rewards[::-1]:
        R = r + args.gamma * R
        rewards.insert(0, R)
    rewards = torch.Tensor(rewards)
    rewards = (rewards - rewards.mean()) / (rewards.std() + np.finfo(np.float32).eps)
    for (action, value), r in zip(saved_actions, rewards):
        reward = r - value.data[0,0]
        action.reinforce(reward)
        value_loss += F.smooth_l1_loss(value, Variable(torch.Tensor([r])))
    optimizer.zero_grad()
    final_nodes = [value_loss] + list(map(lambda p: p.action, saved_actions))
    gradients = [torch.ones(1)] + [None] * len(saved_actions)
    autograd.backward(final_nodes, gradients)
    optimizer.step()
    del model.rewards[:]
    del model.saved_actions[:] 
开发者ID:nosyndicate,项目名称:pytorchrl,代码行数:23,代码来源:actor_critic.py

示例6: _reg_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def _reg_loss(regr, gt_regr, mask):
    ''' L1 regression loss
    Arguments:
      regr (batch x max_objects x dim)
      gt_regr (batch x max_objects x dim)
      mask (batch x max_objects)
    '''
    num = mask.float().sum()
    mask = mask.unsqueeze(2).expand_as(gt_regr).float()

    regr = regr * mask
    gt_regr = gt_regr * mask

    regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, size_average=False)
    regr_loss = regr_loss / (num + 1e-4)
    return regr_loss 
开发者ID:tensorboy,项目名称:centerpose,代码行数:18,代码来源:losses.py

示例7: train

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def train(self, replay_buffer):
		# Sample replay buffer
		state, action, next_state, reward, done = replay_buffer.sample()

		# Compute the target Q value
		with torch.no_grad():
			target_Q = reward + done * self.discount * self.Q_target(next_state).max(1, keepdim=True)[0]

		# Get current Q estimate
		current_Q = self.Q(state).gather(1, action)

		# Compute Q loss
		Q_loss = F.smooth_l1_loss(current_Q, target_Q)

		# Optimize the Q
		self.Q_optimizer.zero_grad()
		Q_loss.backward()
		self.Q_optimizer.step()

		# Update target network by polyak or full copy every X iterations.
		self.iterations += 1
		self.maybe_update_target() 
开发者ID:sfujim,项目名称:BCQ,代码行数:24,代码来源:DQN.py

示例8: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def forward(self, predictions, targets):
        print('+++++++++++++++++++++++++++++++++++')
        cout, rout = predictions

        """ class """

        class_pred   = cout.squeeze().permute(1,2,0).reshape(-1, 2)
        class_target = targets[:, 0].long()
        pos_index = list(np.where(class_target == 1)[0])
        neg_index = list(np.where(class_target == 0)[0])
        class_target = class_target[pos_index + neg_index]
        class_pred   = class_pred[pos_index + neg_index]

        closs = F.cross_entropy(class_pred, class_target, size_average=False, reduce=False)
        closs = torch.div(torch.sum(closs[np.where(class_target != -100)]), 64)
        
        reg_pred = rout.view(-1, 4)
        reg_target = targets[:, 1:] #[1445, 4]
        rloss = F.smooth_l1_loss(reg_pred, reg_target, size_average=False, reduce=False)
        rloss = torch.div(torch.sum(rloss[np.where(class_target == 1)]), 16)


        #debug vis pos anchor
        loss = closs + rloss
        return closs, rloss, loss, reg_pred, reg_target, pos_index, neg_index 
开发者ID:songdejia,项目名称:Siamese-RPN-pytorch,代码行数:27,代码来源:train_siamrpn.py

示例9: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def forward(self, predictions, targets):
        print('+++++++++++++++++++++++++++++++++++++++++++++++++++')
        cout, rout = predictions
        """ class """
        class_pred, class_target = cout, targets[:, 0].long()
        pos_index , neg_index    = list(np.where(class_target == 1)[0]), list(np.where(class_target == 0)[0])
        pos_num, neg_num         = len(pos_index), len(neg_index)
        class_pred, class_target = class_pred[pos_index + neg_index], class_target[pos_index + neg_index]

        closs = F.cross_entropy(class_pred, class_target, size_average=False, reduce=False)
        closs = torch.div(torch.sum(closs), 64)

        """ regression """
        reg_pred = rout
        reg_target = targets[:, 1:]
        rloss = F.smooth_l1_loss(reg_pred, reg_target, size_average=False, reduce=False) #1445, 4
        rloss = torch.div(torch.sum(rloss, dim = 1), 4)
        rloss = torch.div(torch.sum(rloss[pos_index]), 16)

        loss = closs + rloss
        return closs, rloss, loss, reg_pred, reg_target, pos_index, neg_index 
开发者ID:songdejia,项目名称:Siamese-RPN-pytorch,代码行数:23,代码来源:train_siamrpn.py

示例10: compute_rpn_bbox_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_rpn_bbox_loss(rpn_pred_deltas, rpn_target_deltas, rpn_match):
    """
    :param rpn_target_deltas:   (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))).
    Uses 0 padding to fill in unsed bbox deltas.
    :param rpn_pred_deltas: predicted deltas from RPN. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd))))
    :param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
    :return: loss: torch 1D tensor.
    """
    if not 0 in torch.nonzero(rpn_match == 1).size():

        indices = torch.nonzero(rpn_match == 1).squeeze(1)
        # Pick bbox deltas that contribute to the loss
        rpn_pred_deltas = rpn_pred_deltas[indices]
        # Trim target bounding box deltas to the same length as rpn_bbox.
        target_deltas = rpn_target_deltas[:rpn_pred_deltas.size()[0], :]
        # Smooth L1 loss
        loss = F.smooth_l1_loss(rpn_pred_deltas, target_deltas)
    else:
        loss = torch.FloatTensor([0]).cuda()

    return loss 
开发者ID:MIC-DKFZ,项目名称:RegRCNN,代码行数:23,代码来源:mrcnn.py

示例11: compute_mrcnn_bbox_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_mrcnn_bbox_loss(mrcnn_pred_deltas, mrcnn_target_deltas, target_class_ids):
    """
    :param mrcnn_target_deltas: (n_sampled_rois, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
    :param mrcnn_pred_deltas: (n_sampled_rois, n_classes, (dy, dx, (dz), log(dh), log(dw), (log(dh)))
    :param target_class_ids: (n_sampled_rois)
    :return: loss: torch 1D tensor.
    """
    if not 0 in torch.nonzero(target_class_ids > 0).size():
        positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0]
        positive_roi_class_ids = target_class_ids[positive_roi_ix].long()
        target_bbox = mrcnn_target_deltas[positive_roi_ix, :].detach()
        pred_bbox = mrcnn_pred_deltas[positive_roi_ix, positive_roi_class_ids, :]
        loss = F.smooth_l1_loss(pred_bbox, target_bbox)
    else:
        loss = torch.FloatTensor([0]).cuda()

    return loss 
开发者ID:MIC-DKFZ,项目名称:RegRCNN,代码行数:19,代码来源:mrcnn.py

示例12: compute_mrcnn_regression_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_mrcnn_regression_loss(tasks, pred, target, target_class_ids):
    """regression loss is a distance metric between target vector and predicted regression vector.
    :param pred: (n_sampled_rois, n_classes, [n_rg_feats if real regression or 1 if rg_bin task)
    :param target: (n_sampled_rois, [n_rg_feats or n_rg_bins])
    :return: differentiable loss, torch 1D tensor on cuda
    """

    if not 0 in target.shape and not 0 in torch.nonzero(target_class_ids > 0).shape:
        positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0]
        positive_roi_class_ids = target_class_ids[positive_roi_ix].long()
        target = target[positive_roi_ix].detach()
        pred = pred[positive_roi_ix, positive_roi_class_ids]
        if "regression_bin" in tasks:
            loss = F.cross_entropy(pred, target.long())
        else:
            loss = F.smooth_l1_loss(pred, target)
            #loss = F.mse_loss(pred, target)
    else:
        loss = torch.FloatTensor([0.]).cuda()

    return loss

############################################################
#  Detection Layer
############################################################ 
开发者ID:MIC-DKFZ,项目名称:RegRCNN,代码行数:27,代码来源:mrcnn.py

示例13: compute_bbox_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_bbox_loss(target_deltas, pred_deltas, anchor_matches):
    """
    :param target_deltas:   (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))).
    Uses 0 padding to fill in unused bbox deltas.
    :param pred_deltas: predicted deltas from bbox regression head. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd))))
    :param anchor_matches: tensor (n_anchors). value in [-1, 0, class_ids] for negative, neutral, and positive matched anchors.
        i.e., positively matched anchors are marked by class_id >0
    :return: loss: torch 1D tensor.
    """
    if not 0 in torch.nonzero(anchor_matches>0).shape:
        indices = torch.nonzero(anchor_matches>0).squeeze(1)

        # Pick bbox deltas that contribute to the loss
        pred_deltas = pred_deltas[indices]
        # Trim target bounding box deltas to the same length as pred_deltas.
        target_deltas = target_deltas[:pred_deltas.shape[0], :].detach()
        # Smooth L1 loss
        loss = F.smooth_l1_loss(pred_deltas, target_deltas)
    else:
        loss = torch.FloatTensor([0]).cuda()

    return loss 
开发者ID:MIC-DKFZ,项目名称:RegRCNN,代码行数:24,代码来源:retina_net.py

示例14: compute_rg_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def compute_rg_loss(tasks, target, pred, anchor_matches):
    """
    :param target_deltas:   (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))).
    Uses 0 padding to fill in unsed bbox deltas.
    :param pred_deltas: predicted deltas from bbox regression head. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd))))
    :param anchor_matches: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors.
    :return: loss: torch 1D tensor.
    """
    if not 0 in target.shape and not 0 in torch.nonzero(anchor_matches>0).shape:
        indices = torch.nonzero(anchor_matches>0).squeeze(1)
        # Pick rgs that contribute to the loss
        pred = pred[indices]
        # Trim target
        target = target[:pred.shape[0]].detach()
        if 'regression_bin' in tasks:
            loss = F.cross_entropy(pred, target.long())
        else:
            loss = F.smooth_l1_loss(pred, target)
    else:
        loss = torch.FloatTensor([0]).cuda()

    return loss 
开发者ID:MIC-DKFZ,项目名称:RegRCNN,代码行数:24,代码来源:retina_net.py

示例15: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import smooth_l1_loss [as 别名]
def forward(self, confidence, predicted_locations, labels, gt_locations):
        """Compute classification loss and smooth l1 loss.

        Args:
            confidence (batch_size, num_priors, num_classes): class predictions.
            locations (batch_size, num_priors, 4): predicted locations.
            labels (batch_size, num_priors): real labels of all the priors.
            boxes (batch_size, num_priors, 4): real boxes corresponding all the priors.
        """
        num_classes = confidence.size(2)
        with torch.no_grad():
            # derived from cross_entropy=sum(log(p))
            loss = -F.log_softmax(confidence, dim=2)[:, :, 0]
            mask = box_utils.hard_negative_mining(loss, labels, self.neg_pos_ratio)

        confidence = confidence[mask, :]
        classification_loss = F.cross_entropy(confidence.reshape(-1, num_classes), labels[mask], size_average=False)
        pos_mask = labels > 0
        predicted_locations = predicted_locations[pos_mask, :].reshape(-1, 4)
        gt_locations = gt_locations[pos_mask, :].reshape(-1, 4)
        smooth_l1_loss = F.smooth_l1_loss(predicted_locations, gt_locations, size_average=False)
        num_pos = gt_locations.size(0)
        return smooth_l1_loss/num_pos, classification_loss/num_pos 
开发者ID:qfgaohao,项目名称:pytorch-ssd,代码行数:25,代码来源:multibox_loss.py


注:本文中的torch.nn.functional.smooth_l1_loss方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。