当前位置: 首页>>代码示例>>Python>>正文


Python functional.sigmoid方法代码示例

本文整理汇总了Python中torch.nn.functional.sigmoid方法的典型用法代码示例。如果您正苦于以下问题:Python functional.sigmoid方法的具体用法?Python functional.sigmoid怎么用?Python functional.sigmoid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.sigmoid方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: node_forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def node_forward(self, inputs, child_c, child_h):
        child_h_sum = torch.sum(child_h, dim=0, keepdim=True)

        iou = self.ioux(inputs) + self.iouh(child_h_sum)
        i, o, u = torch.split(iou, iou.size(1) // 3, dim=1)
        i, o, u = F.sigmoid(i), F.sigmoid(o), F.tanh(u)

        f = F.sigmoid(
            self.fh(child_h) +
            self.fx(inputs).repeat(len(child_h), 1)
        )
        fc = torch.mul(f, child_c)

        c = torch.mul(i, u) + torch.sum(fc, dim=0, keepdim=True)
        h = torch.mul(o, F.tanh(c))
        return c, h 
开发者ID:dasguptar,项目名称:treelstm.pytorch,代码行数:18,代码来源:model.py

示例2: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, x, hidden):
        # input shiddenape is N*C*H*W, C is 1
        x = x.squeeze() # get rid of C
        x = x.transpose(1,2).transpose(0,1) # make it W*N*H
        r, hidden = self.gru(x, hidden)
        r = r.transpose(1,0).transpose(2,1) # make it N*H*W
        r = r.contiguous()
        r = r.unsqueeze(1) # make it N*C*H*W, C is 1
        #print(r.size())        
        r = self.conv(r)
        #print(r.size())
        r = self.avg(r)
        #print(r.size())
        r = r.view(r.size(0), -1)
        #print(r.size())
        r = self.fc(r)

        return F.sigmoid(r), hidden 
开发者ID:jefflai108,项目名称:Attentive-Filtering-Network,代码行数:20,代码来源:recurrent_attention.py

示例3: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, x):
        #print('1:', x.size()) 
        x = self.conv1(x)
        #print('2:', x.size()) 
        x = self.rb1(x)
        #print('3:', x.size()) 
        x = self.mpool1(x) 
        #print('4:', x.size())
        x = self.features(x)
        #print('5:', x.size())
        x = self.classifier(x)
        #print('6:', x.size())
        x = self.mpool2(x)
        #print('7:', x.size())
        x = x.view(x.size(0), -1)
        #print('8:', x.size())
        x = self.fc(x)

        return F.sigmoid(x) 
开发者ID:jefflai108,项目名称:Attentive-Filtering-Network,代码行数:21,代码来源:residual_attention_network.py

示例4: _concatenation

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def _concatenation(self, x, g):
        input_size = x.size()
        batch_size = input_size[0]
        assert batch_size == g.size(0)

        # theta => (b, c, t, h, w) -> (b, i_c, t, h, w) -> (b, i_c, thw)
        # phi   => (b, g_d) -> (b, i_c)
        theta_x = self.theta(x)
        theta_x_size = theta_x.size()

        # g (b, c, t', h', w') -> phi_g (b, i_c, t', h', w')
        #  Relu(theta_x + phi_g + bias) -> f = (b, i_c, thw) -> (b, i_c, t/s1, h/s2, w/s3)
        phi_g = F.upsample(self.phi(g), size=theta_x_size[2:], mode=self.upsample_mode)
        f = F.relu(theta_x + phi_g, inplace=True)

        #  psi^T * f -> (b, psi_i_c, t/s1, h/s2, w/s3)
        sigm_psi_f = F.sigmoid(self.psi(f))

        # upsample the attentions and multiply
        sigm_psi_f = F.upsample(sigm_psi_f, size=input_size[2:], mode=self.upsample_mode)
        y = sigm_psi_f.expand_as(x) * x
        W_y = self.W(y)

        return W_y, sigm_psi_f 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:26,代码来源:grid_attention_layer.py

示例5: _concatenation_debug

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def _concatenation_debug(self, x, g):
        input_size = x.size()
        batch_size = input_size[0]
        assert batch_size == g.size(0)

        # theta => (b, c, t, h, w) -> (b, i_c, t, h, w) -> (b, i_c, thw)
        # phi   => (b, g_d) -> (b, i_c)
        theta_x = self.theta(x)
        theta_x_size = theta_x.size()

        # g (b, c, t', h', w') -> phi_g (b, i_c, t', h', w')
        #  Relu(theta_x + phi_g + bias) -> f = (b, i_c, thw) -> (b, i_c, t/s1, h/s2, w/s3)
        phi_g = F.upsample(self.phi(g), size=theta_x_size[2:], mode=self.upsample_mode)
        f = F.softplus(theta_x + phi_g)

        #  psi^T * f -> (b, psi_i_c, t/s1, h/s2, w/s3)
        sigm_psi_f = F.sigmoid(self.psi(f))

        # upsample the attentions and multiply
        sigm_psi_f = F.upsample(sigm_psi_f, size=input_size[2:], mode=self.upsample_mode)
        y = sigm_psi_f.expand_as(x) * x
        W_y = self.W(y)

        return W_y, sigm_psi_f 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:26,代码来源:grid_attention_layer.py

示例6: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, x):
        device_id = x.get_device() if torch.cuda.is_available() else None
        feature = self.dnn(x)
        rows, cols = feature.size()[-2:]
        cells = rows * cols
        _feature = feature.permute(0, 2, 3, 1).contiguous().view(feature.size(0), cells, self.anchors.size(0), -1)
        sigmoid = F.sigmoid(_feature[:, :, :, :3])
        iou = sigmoid[:, :, :, 0]
        ij = torch.autograd.Variable(utils.ensure_device(meshgrid(rows, cols).view(1, -1, 1, 2), device_id))
        center_offset = sigmoid[:, :, :, 1:3]
        center = ij + center_offset
        size_norm = _feature[:, :, :, 3:5]
        anchors = torch.autograd.Variable(utils.ensure_device(self.anchors.view(1, 1, -1, 2), device_id))
        size = torch.exp(size_norm) * anchors
        size2 = size / 2
        yx_min = center - size2
        yx_max = center + size2
        logits = _feature[:, :, :, 5:] if _feature.size(-1) > 5 else None
        return feature, iou, center_offset, size_norm, yx_min, yx_max, logits 
开发者ID:ruiminshen,项目名称:yolo2-pytorch,代码行数:21,代码来源:__init__.py

示例7: _pos

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def _pos(self, p):
        pos_fn = self.pos_fn.lower()
        if pos_fn == 'softmax':
            p_sz = p.size()
            p = p.view(p_sz[0],p_sz[1], -1)
            p = F.softmax(p, -1)
            return p.view(p_sz)
        elif pos_fn == 'exp':
            return torch.exp(p)
        elif pos_fn == 'softplus':
            return F.softplus(p, beta=10)
        elif pos_fn == 'sigmoid':
            return F.sigmoid(p)
        else:
            print('Undefined positive function!')
            return 
开发者ID:abdo-eldesokey,项目名称:nconv,代码行数:18,代码来源:nconv.py

示例8: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, inputs, dx_labels=None, rx_labels=None):
        # inputs (B, 2, max_len)
        # bert_pool (B, hidden)
        _, dx_bert_pool = self.bert(inputs[:, 0, :], torch.zeros(
            (inputs.size(0), inputs.size(2))).long().to(inputs.device))
        _, rx_bert_pool = self.bert(inputs[:, 1, :], torch.zeros(
            (inputs.size(0), inputs.size(2))).long().to(inputs.device))

        dx2dx, rx2dx, dx2rx, rx2rx = self.cls(dx_bert_pool, rx_bert_pool)
        # output logits
        if rx_labels is None or dx_labels is None:
            return F.sigmoid(dx2dx), F.sigmoid(rx2dx), F.sigmoid(dx2rx), F.sigmoid(rx2rx)
        else:
            loss = F.binary_cross_entropy_with_logits(dx2dx, dx_labels) + \
                F.binary_cross_entropy_with_logits(rx2dx, dx_labels) + \
                F.binary_cross_entropy_with_logits(dx2rx, rx_labels) + \
                F.binary_cross_entropy_with_logits(rx2rx, rx_labels)
            return loss, F.sigmoid(dx2dx), F.sigmoid(rx2dx), F.sigmoid(dx2rx), F.sigmoid(rx2rx) 
开发者ID:jshang123,项目名称:G-Bert,代码行数:20,代码来源:predictive_models.py

示例9: inference

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def inference(self, images=None, outputs=None, labels=None, **_):
        if outputs is None:
            assert images is not None
            outputs = self.model(images)

        num_outputs = LandmarkDetector.NUM_OUTPUTS
        outputs = outputs.view(-1,num_outputs,self.num_anchors,self.feature_size,self.feature_size)
        anchors = self._get_anchors()

        B,C,A,H,W = outputs.size()
        outputs = outputs.view(B,C,A*H*W)
        anchors = torch.stack([anchors]*B, dim=0)
        anchors = anchors.view(B,-1,A*H*W)

        scores, indices = torch.max(outputs[:,0], dim=1)
        outputs = outputs[torch.arange(B), :, indices]
        anchors = anchors[torch.arange(B), :, indices]
        boxes = self._targets_to_boxes(outputs[:,1:5], anchors)
        landmarks = self._targets_to_landmarks(outputs[:,5:], anchors)
        probabilities = F.sigmoid(scores)
        return {'boxes': boxes, 'landmarks': landmarks, 'probabilities': probabilities} 
开发者ID:pudae,项目名称:kaggle-humpback,代码行数:23,代码来源:landmark_detector.py

示例10: generate_detections

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def generate_detections(self, proposal_bboxes: Tensor, proposal_classes: Tensor, image_width: int, image_height: int) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
            batch_size = proposal_bboxes.shape[0]
            #print("detection_bboxes:",proposal_bboxes)
            detection_bboxes = BBox.clip(proposal_bboxes, left=0, top=0, right=image_width, bottom=image_height)
            #print("detection_bboxes_clip:", detection_bboxes)
            detection_probs = F.sigmoid(proposal_classes)
            detection_zheng=detection_probs>=EvalConfig.KEEP
            all_detection_classes=[]
            all_detection_probs=[]
            for label,prob in zip(detection_zheng,detection_probs):
                detection_classes = []
                detection_p=[]
                for index,i in enumerate(label):
                    if i==1:
                        detection_classes.append(index)
                        detection_p.append(prob[index].item())
                all_detection_classes.append(detection_classes)
                all_detection_probs.append(detection_p)

            #print('all_detection_classes:',all_detection_classes)

            return detection_bboxes, all_detection_classes, all_detection_probs 
开发者ID:MagicChuyi,项目名称:SlowFast-Network-pytorch,代码行数:24,代码来源:model.py

示例11: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, e1, rel):

        e1_embedded_real = self.inp_drop(self.emb_e_real(e1)).view(Config.batch_size, -1)
        rel_embedded_real = self.inp_drop(self.emb_rel_real(rel)).view(Config.batch_size, -1)
        e1_embedded_img = self.inp_drop(self.emb_e_img(e1)).view(Config.batch_size, -1)
        rel_embedded_img = self.inp_drop(self.emb_rel_img(rel)).view(Config.batch_size, -1)

        e1_embedded_real = self.inp_drop(e1_embedded_real)
        rel_embedded_real = self.inp_drop(rel_embedded_real)
        e1_embedded_img = self.inp_drop(e1_embedded_img)
        rel_embedded_img = self.inp_drop(rel_embedded_img)

        # complex space bilinear product (equivalent to HolE)
        realrealreal = torch.mm(e1_embedded_real*rel_embedded_real, self.emb_e_real.weight.transpose(1,0))
        realimgimg = torch.mm(e1_embedded_real*rel_embedded_img, self.emb_e_img.weight.transpose(1,0))
        imgrealimg = torch.mm(e1_embedded_img*rel_embedded_real, self.emb_e_img.weight.transpose(1,0))
        imgimgreal = torch.mm(e1_embedded_img*rel_embedded_img, self.emb_e_real.weight.transpose(1,0))
        pred = realrealreal + realimgimg + imgrealimg - imgimgreal
        pred = F.sigmoid(pred)

        return pred 
开发者ID:SmartDataAnalytics,项目名称:LiteralE,代码行数:23,代码来源:model.py

示例12: process

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def process(eval_img, device='cpu'):
    (img, origin, unpadder), file_name = eval_img
    with torch.no_grad():
        out = model(img.to(device))

    prob = F.sigmoid(out)
    mask = prob > 0.5
    mask = torch.nn.MaxPool2d(kernel_size=(3, 3), padding=(1, 1), stride=1)(mask.float()).byte()
    mask = unpadder(mask)
    mask = mask.float().cpu()

    save_image(mask, file_name + ' _mask.jpg')
    origin_np = np.array(to_pil_image(origin[0]))
    mask_np = to_pil_image(mask[0]).convert("L")
    mask_np = np.array(mask_np, dtype='uint8')
    mask_np = draw_bounding_box(origin_np, mask_np, 500)
    mask_ = Image.fromarray(mask_np)
    mask_.save(file_name + "_contour.jpg")
    # ret, mask_np = cv2.threshold(mask_np, 127, 255, 0)
    # dst = cv2.inpaint(origin_np, mask_np, 1, cv2.INPAINT_NS)
    # out = Image.fromarray(dst)
    # out.save(file_name + ' _box.jpg') 
开发者ID:yu45020,项目名称:Text_Segmentation_Image_Inpainting,代码行数:24,代码来源:demo_segmentation.py

示例13: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.mp1(x1)

        x3 = self.conv2(x2)
        x4 = self.mp2(x3)

        x5 = self.conv3(x4)
        x6 = self.mp3(x5)

        # Bottom
        x7 = self.conv4(x6)

        # Up-sampling
        x8 = self.up1(x7, x5)
        x9 = self.up2(x8, x3)
        x10 = self.up3(x9, x1)

        x11 = self.conv9(x10)
        preds = F.sigmoid(x11)

        return preds 
开发者ID:neuropoly,项目名称:domainadaptation,代码行数:24,代码来源:models.py

示例14: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def forward(self, obs_variable, actions_variable, target):
        """
        Compute the cross entropy loss using the logit, this is more numerical
        stable than first apply sigmoid function and then use BCELoss.

        As in discriminator, we only want to discriminate the expert from
        learner, thus this is a binary classification problem.

        Parameters
        ----------
        obs_variable (Variable): state wrapped in Variable
        actions_variable (Variable): action wrapped in Variable
        target (Variable): 1 or 0, mark the real and fake of the
            samples

        Returns
        -------
        loss (Variable):
        """
        logits = self.get_logits(obs_variable, actions_variable)
        loss_fn = nn.BCEWithLogitsLoss()
        loss = loss_fn(logits, target)

        return loss 
开发者ID:nosyndicate,项目名称:pytorchrl,代码行数:26,代码来源:discriminator.py

示例15: prediction

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import sigmoid [as 别名]
def prediction(self, observation, action):
        """
        Make the prediction of the class label

        Parameters
        ----------
        observation (numpy.ndarray): state
        action (numpy.ndarray): action

        Returns
        -------
        prob (numpy.ndarray):
        """
        obs_variable = Variable(torch.from_numpy(observation),
            volatile=True).type(torch.FloatTensor)

        # obs_variable sets volatile to True, thus, we do not set
        # it here
        action_variable = Variable(torch.from_numpy(action)).type(
            torch.FloatTensor)

        logits = self.get_logits(obs_variable, action_variable)
        probs = F.sigmoid(logits)

        return probs.data.numpy() 
开发者ID:nosyndicate,项目名称:pytorchrl,代码行数:27,代码来源:discriminator.py


注:本文中的torch.nn.functional.sigmoid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。