本文整理汇总了Python中torch.nn.functional.relu方法的典型用法代码示例。如果您正苦于以下问题:Python functional.relu方法的具体用法?Python functional.relu怎么用?Python functional.relu使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.relu方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
示例2: __init__
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(MyResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# note the increasing dilation
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
# these layers will not be used
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
示例3: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
"""Forward function."""
outs = []
for i, layer in enumerate(self.features):
x = layer(x)
if i in self.out_feature_indices:
outs.append(x)
for i, layer in enumerate(self.extra):
x = F.relu(layer(x), inplace=True)
if i % 2 == 1:
outs.append(x)
outs[0] = self.l2_norm(outs[0])
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)
示例4: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
out = F.relu(self.conv1(x))
out = self.bnm1(out)
out = F.relu(self.conv2(out))
out = self.bnm2(out)
out = F.max_pool2d(out, 2)
out = F.relu(self.conv3(out))
out = self.bnm3(out)
out = F.relu(self.conv4(out))
out = self.bnm4(out)
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
#out = self.dropout1(out)
out = F.relu(self.fc1(out))
#out = self.dropout2(out)
out = self.bnm5(out)
out = F.relu(self.fc2(out))
#out = self.dropout3(out)
out = self.bnm6(out)
out = self.fc3(out)
return (out)
示例5: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.max_pool2d(x, 2)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.normalize(x)
return x
示例6: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
示例7: forward_single
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward_single(self, x, scale, stride):
"""Forward features of a single scale levle.
Args:
x (Tensor): FPN feature maps of the specified stride.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
stride (int): The corresponding stride for feature maps, only
used to normalize the bbox prediction when self.norm_on_bbox
is True.
Returns:
tuple: scores for each class, bbox predictions and centerness
predictions of input feature maps.
"""
cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x)
if self.centerness_on_reg:
centerness = self.conv_centerness(reg_feat)
else:
centerness = self.conv_centerness(cls_feat)
# scale the bbox_pred of different level
# float to avoid overflow when enabling FP16
bbox_pred = scale(bbox_pred).float()
if self.norm_on_bbox:
bbox_pred = F.relu(bbox_pred)
if not self.training:
bbox_pred *= stride
else:
bbox_pred = bbox_pred.exp()
return cls_score, bbox_pred, centerness
示例8: forward_single
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward_single(self, x):
"""Forward feature map of a single scale level."""
x = self.rpn_conv(x)
x = F.relu(x, inplace=True)
rpn_cls_score = self.rpn_cls(x)
rpn_bbox_pred = self.rpn_reg(x)
return rpn_cls_score, rpn_bbox_pred
示例9: forward_single
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward_single(self, x):
"""Forward feature of a single scale level."""
x = self.rpn_conv(x)
x = F.relu(x, inplace=True)
(cls_score, bbox_pred, shape_pred,
loc_pred) = super(GARPNHead, self).forward_single(x)
return cls_score, bbox_pred, shape_pred, loc_pred
示例10: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
# x = self.conv3(x)
x = x.view(x.size(0),-1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return (x, F.log_softmax(x))
示例11: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
示例12: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import relu [as 别名]
def forward(self, x):
y1 = self.sep_conv1(x)
y2 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1)
if self.stride==2:
y2 = self.bn1(self.conv1(y2))
return F.relu(y1+y2)