本文整理汇总了Python中torch.nn.functional.pairwise_distance方法的典型用法代码示例。如果您正苦于以下问题:Python functional.pairwise_distance方法的具体用法?Python functional.pairwise_distance怎么用?Python functional.pairwise_distance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.pairwise_distance方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: kmeans
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def kmeans(input, n_clusters=16, tol=1e-6):
"""
TODO: check correctness
"""
indices = torch.Tensor(np.random.choice(input.size(-1), n_clusters))
values = input[:, :, indices]
while True:
dist = func.pairwise_distance(
input.unsqueeze(2).expand(-1, -1, values.size(2), input.size(2)).reshape(
input.size(0), input.size(1), input.size(2) * values.size(2)),
values.unsqueeze(3).expand(-1, -1, values.size(2), input.size(2)).reshape(
input.size(0), input.size(1), input.size(2) * values.size(2))
)
choice_cluster = torch.argmin(dist, dim=1)
old_values = values
values = input[choice_cluster.nonzeros()]
shift = (old_values - values).norm(dim=1)
if shift.max() ** 2 < tol:
break
return values
示例2: embed_forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def embed_forward(self, embed_x, embed_y, embed_z):
"""embed_x, mask_norm_x: type_specific net output (Anchor)
embed_y, mask_norm_y: type_specifc net output (Negative)
embed_z, mask_norm_z: type_specifi net output (Positive)
conditions: only x(anchor data) has conditions
"""
if self.metric_branch is None:
dist_neg = F.pairwise_distance(embed_x, embed_y, 2)
dist_pos = F.pairwise_distance(embed_x, embed_z, 2)
else:
dist_neg = self.metric_branch(embed_x * embed_y)
dist_pos = self.metric_branch(embed_x * embed_z)
target = torch.FloatTensor(dist_neg.size()).fill_(1)
target = Variable(target.cuda())
# type specific triplet loss
loss_type_triplet = self.loss_triplet(dist_neg, dist_pos, target)
return loss_type_triplet
示例3: text_forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def text_forward(self, x, y, z):
""" x: Anchor data
y: Distant (negative) data
z: Close (positive) data
"""
desc_x = self.text_branch(x.text)
desc_y = self.text_branch(y.text)
desc_z = self.text_branch(z.text)
distd_p = F.pairwise_distance(desc_y, desc_z, 2)
distd_n1 = F.pairwise_distance(desc_x, desc_y, 2)
distd_n2 = F.pairwise_distance(desc_x, desc_z, 2)
has_text = x.has_text * y.has_text * z.has_text
loss_sim_t1 = selective_margin_loss(distd_p, distd_n1, self.margin, has_text)
loss_sim_t2 = selective_margin_loss(distd_p, distd_n2, self.margin, has_text)
loss_sim_t = (loss_sim_t1 + loss_sim_t2) / 2.
return loss_sim_t, desc_x, desc_y, desc_z
示例4: calc_vse_loss
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def calc_vse_loss(self, desc_x, general_x, general_y, general_z, has_text):
""" Both y and z are assumed to be negatives because they are not from the same
item as x
desc_x: Anchor language embedding
general_x: Anchor visual embedding
general_y: Visual embedding from another item from input triplet
general_z: Visual embedding from another item from input triplet
has_text: Binary indicator of whether x had a text description
"""
distd1_p = F.pairwise_distance(general_x, desc_x, 2)
distd1_n1 = F.pairwise_distance(general_y, desc_x, 2)
distd1_n2 = F.pairwise_distance(general_z, desc_x, 2)
loss_vse_1 = selective_margin_loss(distd1_p, distd1_n1, self.margin, has_text)
loss_vse_2 = selective_margin_loss(distd1_p, distd1_n2, self.margin, has_text)
return (loss_vse_1 + loss_vse_2) / 2.
示例5: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def forward(self, anchor, positive, negative):
assert anchor.size() == positive.size(), "Input sizes between positive and negative must be equal."
assert anchor.size() == negative.size(), "Input sizes between anchor and negative must be equal."
assert positive.size() == negative.size(), "Input sizes between positive and negative must be equal."
assert anchor.dim() == 2, "Input must be a 2D matrix."
d_p = F.pairwise_distance(anchor, positive, self.p, self.eps)
d_n = F.pairwise_distance(anchor, negative, self.p, self.eps)
if self.swap:
d_s = F.pairwise_distance(positive, negative, self.p, self.eps)
d_n = torch.min(d_n, d_s)
dist = torch.log(1 + torch.exp(d_p - d_n))
loss = torch.mean(dist)
return loss
示例6: test_inference_hmm_posterior_importance_sampling
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_hmm_posterior_importance_sampling(self):
samples = importance_sampling_samples
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
posterior_effective_sample_size_min = samples * 0.001
start = time.time()
posterior = self._model.posterior_results(samples, observe=observation)
add_importance_sampling_duration(time.time() - start)
posterior_mean_unweighted = posterior.unweighted().mean
posterior_mean = posterior.mean
posterior_effective_sample_size = float(posterior.effective_sample_size)
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'l2_distance', 'kl_divergence')
add_importance_sampling_kl_divergence(kl_divergence)
self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例7: test_inference_hmm_posterior_importance_sampling_with_inference_network_ff
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_hmm_posterior_importance_sampling_with_inference_network_ff(self):
samples = importance_sampling_with_inference_network_ff_samples
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
posterior_effective_sample_size_min = samples * 0.001
self._model.reset_inference_network()
self._model.learn_inference_network(num_traces=importance_sampling_with_inference_network_ff_training_traces, observe_embeddings={'obs{}'.format(i): {'depth': 2, 'dim': 32} for i in range(len(observation))}, prior_inflation=importance_sampling_with_inference_network_ff_prior_inflation, inference_network=InferenceNetwork.FEEDFORWARD)
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING_WITH_INFERENCE_NETWORK, observe=observation)
add_importance_sampling_with_inference_network_ff_duration(time.time() - start)
posterior_mean_unweighted = posterior.unweighted().mean
posterior_mean = posterior.mean
posterior_effective_sample_size = float(posterior.effective_sample_size)
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'l2_distance', 'kl_divergence')
add_importance_sampling_with_inference_network_ff_kl_divergence(kl_divergence)
self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例8: test_inference_hmm_posterior_importance_sampling_with_inference_network_lstm
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_hmm_posterior_importance_sampling_with_inference_network_lstm(self):
samples = importance_sampling_with_inference_network_ff_samples
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
posterior_effective_sample_size_min = samples * 0.001
self._model.reset_inference_network()
self._model.learn_inference_network(num_traces=importance_sampling_with_inference_network_lstm_training_traces, observe_embeddings={'obs{}'.format(i): {'depth': 2, 'dim': 32} for i in range(len(observation))}, prior_inflation=importance_sampling_with_inference_network_lstm_prior_inflation, inference_network=InferenceNetwork.LSTM)
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING_WITH_INFERENCE_NETWORK, observe=observation)
add_importance_sampling_with_inference_network_lstm_duration(time.time() - start)
posterior_mean_unweighted = posterior.unweighted().mean
posterior_mean = posterior.mean
posterior_effective_sample_size = float(posterior.effective_sample_size)
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'l2_distance', 'kl_divergence')
add_importance_sampling_with_inference_network_lstm_kl_divergence(kl_divergence)
self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例9: test_inference_hmm_posterior_lightweight_metropolis_hastings
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_hmm_posterior_lightweight_metropolis_hastings(self):
samples = lightweight_metropolis_hastings_samples
burn_in = lightweight_metropolis_hastings_burn_in
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.LIGHTWEIGHT_METROPOLIS_HASTINGS, observe=observation)[burn_in:]
add_lightweight_metropolis_hastings_duration(time.time() - start)
posterior_mean = posterior.mean
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'l2_distance', 'kl_divergence')
add_lightweight_metropolis_hastings_kl_divergence(kl_divergence)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例10: test_inference_hmm_posterior_random_walk_metropolis_hastings
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_hmm_posterior_random_walk_metropolis_hastings(self):
samples = lightweight_metropolis_hastings_samples
burn_in = lightweight_metropolis_hastings_burn_in
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.RANDOM_WALK_METROPOLIS_HASTINGS, observe=observation)[burn_in:]
add_random_walk_metropolis_hastings_duration(time.time() - start)
posterior_mean = posterior.mean
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'l2_distance', 'kl_divergence')
add_random_walk_metropolis_hastings_kl_divergence(kl_divergence)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例11: test_inference_remote_hmm_posterior_importance_sampling_with_inference_network
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_remote_hmm_posterior_importance_sampling_with_inference_network(self):
samples = importance_sampling_with_inference_network_samples
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
posterior_effective_sample_size_min = samples * 0.03
self._model.reset_inference_network()
self._model.learn_inference_network(num_traces=importance_sampling_with_inference_network_training_traces, observe_embeddings={'obs{}'.format(i): {'depth': 2, 'dim': 16} for i in range(len(observation))})
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.IMPORTANCE_SAMPLING_WITH_INFERENCE_NETWORK, observe=observation)
add_importance_sampling_with_inference_network_duration(time.time() - start)
posterior_mean_unweighted = posterior.unweighted().mean
posterior_mean = posterior.mean
posterior_effective_sample_size = float(posterior.effective_sample_size)
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'posterior_mean_unweighted', 'posterior_mean', 'posterior_mean_correct', 'posterior_effective_sample_size', 'posterior_effective_sample_size_min', 'l2_distance', 'kl_divergence')
add_importance_sampling_with_inference_network_kl_divergence(kl_divergence)
self.assertGreater(posterior_effective_sample_size, posterior_effective_sample_size_min)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例12: test_inference_remote_hmm_posterior_lightweight_metropolis_hastings
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_remote_hmm_posterior_lightweight_metropolis_hastings(self):
samples = lightweight_metropolis_hastings_samples
burn_in = lightweight_metropolis_hastings_burn_in
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.LIGHTWEIGHT_METROPOLIS_HASTINGS, observe=observation)[burn_in:]
add_lightweight_metropolis_hastings_duration(time.time() - start)
posterior_mean = posterior.mean
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'l2_distance', 'kl_divergence')
add_lightweight_metropolis_hastings_kl_divergence(kl_divergence)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例13: test_inference_remote_hmm_posterior_random_walk_metropolis_hastings
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def test_inference_remote_hmm_posterior_random_walk_metropolis_hastings(self):
samples = lightweight_metropolis_hastings_samples
burn_in = lightweight_metropolis_hastings_burn_in
observation = {'obs{}'.format(i): self._observation[i] for i in range(len(self._observation))}
posterior_mean_correct = self._posterior_mean_correct
start = time.time()
posterior = self._model.posterior_results(samples, inference_engine=InferenceEngine.RANDOM_WALK_METROPOLIS_HASTINGS, observe=observation)[burn_in:]
add_random_walk_metropolis_hastings_duration(time.time() - start)
posterior_mean = posterior.mean
l2_distance = float(F.pairwise_distance(posterior_mean, posterior_mean_correct).sum())
kl_divergence = float(sum([pyprob.distributions.Distribution.kl_divergence(Categorical(i + util._epsilon), Categorical(j + util._epsilon)) for (i, j) in zip(posterior_mean, posterior_mean_correct)]))
util.eval_print('samples', 'burn_in', 'posterior_mean', 'posterior_mean_correct', 'l2_distance', 'kl_divergence')
add_random_walk_metropolis_hastings_kl_divergence(kl_divergence)
self.assertLess(l2_distance, 3)
self.assertLess(kl_divergence, 1)
示例14: perceptual_features_reconstruction
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def perceptual_features_reconstruction(list_attentions_a, list_attentions_b, factor=1.):
loss = 0.
for i, (a, b) in enumerate(zip(list_attentions_a, list_attentions_b)):
bs, c, w, h = a.shape
# a of shape (b, c, w, h) to (b, c * w * h)
a = a.view(bs, -1)
b = b.view(bs, -1)
a = F.normalize(a, p=2, dim=-1)
b = F.normalize(b, p=2, dim=-1)
layer_loss = (F.pairwise_distance(a, b, p=2)**2) / (c * w * h)
loss += torch.mean(layer_loss)
return factor * (loss / len(list_attentions_a))
示例15: base
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import pairwise_distance [as 别名]
def base(self, x, y, z):
#base_y = self.basenet(y)
#if random.random() > .5: # TODO Debug, make sure order doesn't matter
# base_x = self.basenet(x)
# base_z = self.basenet(z)
#else:
# base_z = self.basenet(z)
# base_x = self.basenet(x)
base_x = self.basenet(x)
base_y = self.basenet(y)
base_z = self.basenet(z)
if self.distance == 'cosine':
dist_a = .5 - .5 * F.cosine_similarity(base_x, base_y, 1, 1e-6).view(-1)
dist_b = .5 - .5 * F.cosine_similarity(base_y, base_z, 1, 1e-6).view(-1)
elif self.distance == 'l2':
dist_a = F.pairwise_distance(base_x, base_y, 2).view(-1)
dist_b = F.pairwise_distance(base_y, base_z, 2).view(-1)
else:
assert False, "Wrong args.distance"
print('fc7 norms:', base_x.norm().item(), base_y.norm().item(), base_z.norm().item())
print('pairwise dist means:', dist_a.mean().item(), dist_b.mean().item())
return base_x, base_y, base_z, dist_a, dist_b