当前位置: 首页>>代码示例>>Python>>正文


Python functional.one_hot方法代码示例

本文整理汇总了Python中torch.nn.functional.one_hot方法的典型用法代码示例。如果您正苦于以下问题:Python functional.one_hot方法的具体用法?Python functional.one_hot怎么用?Python functional.one_hot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.one_hot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_body

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def _get_body(self, x, target):
        cos_t = torch.gather(x, 1, target.unsqueeze(1))  # cos(theta_yi)
        if self.easy_margin:
            cond = torch.relu(cos_t)
        else:
            cond_v = cos_t - self.threshold
            cond = torch.relu(cond_v)
        cond = cond.bool()
        # Apex would convert FP16 to FP32 here
        # cos(theta_yi + m)
        new_zy = torch.cos(torch.acos(cos_t) + self.m).type(cos_t.dtype)
        if self.easy_margin:
            zy_keep = cos_t
        else:
            zy_keep = cos_t - self.mm  # (cos(theta_yi) - sin(pi - m)*m)
        new_zy = torch.where(cond, new_zy, zy_keep)
        diff = new_zy - cos_t  # cos(theta_yi + m) - cos(theta_yi)
        gt_one_hot = F.one_hot(target, num_classes=self.classes)
        body = gt_one_hot * diff
        return body 
开发者ID:PistonY,项目名称:torch-toolbox,代码行数:22,代码来源:loss.py

示例2: intersection_and_union

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def intersection_and_union(pred, target, num_classes, batch=None):
    r"""Computes intersection and union of predictions.

    Args:
        pred (LongTensor): The predictions.
        target (LongTensor): The targets.
        num_classes (int): The number of classes.
        batch (LongTensor): The assignment vector which maps each pred-target
            pair to an example.

    :rtype: (:class:`LongTensor`, :class:`LongTensor`)
    """
    pred, target = F.one_hot(pred, num_classes), F.one_hot(target, num_classes)

    if batch is None:
        i = (pred & target).sum(dim=0)
        u = (pred | target).sum(dim=0)
    else:
        i = scatter_add(pred & target, batch, dim=0)
        u = scatter_add(pred | target, batch, dim=0)

    return i, u 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:24,代码来源:metric.py

示例3: parse_sdf

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def parse_sdf(src):
    src = src.split('\n')[3:]
    num_atoms, num_bonds = [int(item) for item in src[0].split()[:2]]

    atom_block = src[1:num_atoms + 1]
    pos = parse_txt_array(atom_block, end=3)
    x = torch.tensor([elems[item.split()[3]] for item in atom_block])
    x = F.one_hot(x, num_classes=len(elems))

    bond_block = src[1 + num_atoms:1 + num_atoms + num_bonds]
    row, col = parse_txt_array(bond_block, end=2, dtype=torch.long).t() - 1
    row, col = torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)
    edge_index = torch.stack([row, col], dim=0)
    edge_attr = parse_txt_array(bond_block, start=2, end=3) - 1
    edge_attr = torch.cat([edge_attr, edge_attr], dim=0)
    edge_index, edge_attr = coalesce(edge_index, edge_attr, num_atoms,
                                     num_atoms)

    data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, pos=pos)
    return data 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:22,代码来源:sdf.py

示例4: focal_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def focal_loss(self, x, y):
        '''Focal loss.
        Args:
          x: (tensor) sized [N,D].
          y: (tensor) sized [N,].
        Return:
          (tensor) focal loss.
        '''
        alpha = 0.25
        gamma = 2

        t = F.one_hot(y.data, 1+self.num_classes)  # [N,21]
        t = t[:,1:]  # exclude background
        t = Variable(t)
        
        p = x.sigmoid()
        pt = p*t + (1-p)*(1-t)         # pt = p if t > 0 else 1-p
        w = alpha*t + (1-alpha)*(1-t)  # w = alpha if t > 0 else 1-alpha
        w = w * (1-pt).pow(gamma)
        return F.binary_cross_entropy_with_logits(x, t, w, reduction='sum') 
开发者ID:tristandb,项目名称:EfficientDet-PyTorch,代码行数:22,代码来源:losses.py

示例5: focal_loss_alt

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def focal_loss_alt(self, x, y, alpha=0.25, gamma=1.5):
        '''Focal loss alternative.

        Args:
          x: (tensor) sized [N,D].
          y: (tensor) sized [N,].

        Return:
          (tensor) focal loss.
        '''
        t = F.one_hot(y, self.num_classes+1)
        t = t[:,1:]

        xt = x*(2*t-1)  # xt = x if t > 0 else -x
        pt = (2*xt+1).sigmoid()
        pt = pt.clamp(1e-7, 1.0)
        w = (0+alpha)*(0+t) + (1-alpha)*(1-t)
        loss = -w*pt.log() / gamma
        return loss.sum() 
开发者ID:tristandb,项目名称:EfficientDet-PyTorch,代码行数:21,代码来源:losses.py

示例6: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def forward(self, input, target):
        """
        Args:
            input: [B * T, V]
            target: [B * T]
        Returns:
            cross entropy: [1]
        """
        mask = (target == self.ignore_index).unsqueeze(-1)
        q = F.one_hot(target.long(), self.vocab_size).type(torch.float32)
        u = 1.0 / self.vocab_size
        q_prime = (1.0 - self.label_smoothing) * q + self.label_smoothing * u
        q_prime = q_prime.masked_fill(mask, 0)

        ce = self.cross_entropy_with_logits(q_prime, input)
        if self.reduction == 'mean':
            lengths = torch.sum(target != self.ignore_index)
            return ce.sum() / lengths
        elif self.reduction == 'sum':
            return ce.sum()
        else:
            raise NotImplementedError 
开发者ID:jason9693,项目名称:MusicTransformer-pytorch,代码行数:24,代码来源:criterion.py

示例7: _sqrt_hessian_sampled

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def _sqrt_hessian_sampled(self, module, g_inp, g_out, mc_samples=1):
        self._check_2nd_order_parameters(module)

        M = mc_samples
        C = module.input0.shape[1]

        probs = self._get_probs(module)
        V_dim = 0
        probs_unsqueezed = probs.unsqueeze(V_dim).repeat(M, 1, 1)

        multi = multinomial(probs, M, replacement=True)
        classes = one_hot(multi, num_classes=C)
        classes = einsum("nvc->vnc", classes).float()

        sqrt_mc_h = (probs_unsqueezed - classes) / sqrt(M)

        if module.reduction == "mean":
            N = module.input0.shape[0]
            sqrt_mc_h /= sqrt(N)

        return sqrt_mc_h 
开发者ID:f-dangel,项目名称:backpack,代码行数:23,代码来源:crossentropyloss.py

示例8: test_multi_class_seg_2d

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def test_multi_class_seg_2d(self):
        num_classes = 6  # labels 0 to 5
        # define 2d examples
        target = torch.tensor([[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]])
        # add another dimension corresponding to the batch (batch size = 1 here)
        target = target.unsqueeze(0)  # shape (1, H, W)
        pred_very_good = 1000 * F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2).float()
        # initialize the mean dice loss
        loss = FocalLoss()

        # focal loss for pred_very_good should be close to 0
        target_one_hot = F.one_hot(target, num_classes=num_classes).permute(0, 3, 1, 2)  # test one hot
        target = target.unsqueeze(1)  # shape (1, 1, H, W)

        focal_loss_good = float(loss(pred_very_good, target).cpu())
        self.assertAlmostEqual(focal_loss_good, 0.0, places=3)

        focal_loss_good = float(loss(pred_very_good, target_one_hot).cpu())
        self.assertAlmostEqual(focal_loss_good, 0.0, places=3) 
开发者ID:Project-MONAI,项目名称:MONAI,代码行数:21,代码来源:test_focal_loss.py

示例9: test_compute_policy_gradient_loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def test_compute_policy_gradient_loss(self):
        T, B, N = self.logits.shape

        # Calculate the the cross entropy loss, with the formula:
        # loss = -sum_over_j(y_j * log(p_j))
        # Where:
        # - `y_j` is whether the action corrisponding to index j has been taken or not,
        #   (hence y is a one-hot-array of size == number of actions).
        # - `p_j` is the value of the sofmax logit corresponding to the jth action.
        # In our implementation, we also multiply for the advantages.
        labels = F.one_hot(torch.from_numpy(self.actions), num_classes=N).numpy()
        cross_entropy_loss = -labels * np.log(_softmax(self.logits))
        ground_truth_value = np.sum(
            cross_entropy_loss * self.advantages.reshape(T, B, 1)
        )

        calculated_value = polybeast.compute_policy_gradient_loss(
            torch.from_numpy(self.logits),
            torch.from_numpy(self.actions),
            torch.from_numpy(self.advantages),
        )
        assert_allclose(ground_truth_value, calculated_value.item()) 
开发者ID:facebookresearch,项目名称:torchbeast,代码行数:24,代码来源:polybeast_loss_functions_test.py

示例10: cross_entropy

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def cross_entropy(pred,
                  label,
                  weight=None,
                  reduction='mean',
                  avg_factor=None,
                  label_smooth=None):
    # element-wise losses
    if label_smooth is None:
        loss = F.cross_entropy(pred, label, reduction='none')
    else:
        num_classes = pred.size(1)
        target = F.one_hot(label, num_classes).type_as(pred)
        target = target.sub_(label_smooth).clamp_(0).add_(label_smooth / num_classes)
        loss = F.kl_div(pred.log_softmax(1), target, reduction='none').sum(1)

    # apply weights and do the reduction
    if weight is not None:
        weight = weight.float()
    loss = weight_reduce_loss(
        loss, weight=weight, reduction=reduction, avg_factor=avg_factor)

    return loss 
开发者ID:tascj,项目名称:kaggle-kuzushiji-recognition,代码行数:24,代码来源:cross_entropy_loss.py

示例11: train_step

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def train_step(model, state_transitions, tgt, num_actions):
    if len(state_transitions) <=0:
        print("empty state transitions")
        return
    cur_states = torch.stack( ([torch.Tensor(s.state) for s in state_transitions]) ).to(model.device)
    rewards = torch.stack( ([torch.Tensor([s.reward]) for s in state_transitions]) ).to(model.device)
    Qs = torch.stack( ([torch.Tensor([s.qval]) for s in state_transitions]) ).to(model.device)
    mask = torch.stack(([torch.Tensor([0]) if s.done else torch.Tensor([1]) for s in state_transitions])).to(model.device)
    next_states = torch.stack( ([torch.Tensor(s.next_state) for s in state_transitions]) ).to(model.device)
    actions = [s.action for s in state_transitions]
    # import ipdb; ipdb.set_trace()
    with torch.no_grad():
        # actual_Q_values = Qs
        pred_qvals_next = model(next_states).max(-1)[0]
    model.opt.zero_grad()
    pred_qvals = model(cur_states)

    one_hot_actions = F.one_hot(torch.LongTensor(actions),num_actions).to(model.device)
    # loss = torch.mean(torch.sqrt((torch.sum(pred_qvals*one_hot_actions,-1) - actual_Q_values.view(-1) )**2)).to(model.device)
    # loss = F.smooth_l1_loss(torch.sum(pred_qvals*one_hot_actions,-1), actual_Q_values.view(-1) )
    loss = F.smooth_l1_loss(torch.sum(pred_qvals*one_hot_actions,-1), rewards.view(-1)+0.99*mask[:,0]*pred_qvals_next.view(-1) ).mean()
    loss.backward()
    model.opt.step()
    return loss 
开发者ID:FitMachineLearning,项目名称:FitML,代码行数:26,代码来源:Load_Agent.py

示例12: train_step

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def train_step(model, state_transitions, tgt, num_actions, gamma):
    if len(state_transitions) <=0:
        print("empty state transitions")
        return
    cur_states = torch.stack( ([torch.Tensor(s.state) for s in state_transitions]) ).to(model.device)
    rewards = torch.stack( ([torch.Tensor([s.reward]) for s in state_transitions]) ).to(model.device)
    Qs = torch.stack( ([torch.Tensor([s.qval]) for s in state_transitions]) ).to(model.device)
    mask = torch.stack(([torch.Tensor([0]) if s.done else torch.Tensor([1]) for s in state_transitions])).to(model.device)
    next_states = torch.stack( ([torch.Tensor(s.next_state) for s in state_transitions]) ).to(model.device)
    actions = [s.action for s in state_transitions]
    # import ipdb; ipdb.set_trace()
    with torch.no_grad():
        actual_Q_values = Qs
        # import ipdb; ipdb.set_trace()
        pred_qvals_next = model(next_states.view(len(state_transitions),3,160,140*3)).max(-1)[0]
    model.opt.zero_grad()
    pred_qvals = model(cur_states.view(len(state_transitions),3,160,140*3))

    one_hot_actions = F.one_hot(torch.LongTensor(actions),num_actions).to(model.device)
    # loss = torch.mean(torch.sqrt((torch.sum(pred_qvals*one_hot_actions,-1) - actual_Q_values.view(-1) )**2)).to(model.device)
    loss = F.smooth_l1_loss(torch.sum(pred_qvals*one_hot_actions,-1), actual_Q_values.view(-1) )
    # loss = F.smooth_l1_loss(torch.sum(pred_qvals*one_hot_actions,-1), rewards.view(-1)+gamma*mask[:,0]*pred_qvals_next.view(-1) ).mean()
    loss.backward()
    model.opt.step()
    return loss 
开发者ID:FitMachineLearning,项目名称:FitML,代码行数:27,代码来源:ATARI_DQN_CNN.py

示例13: _sample_layer_choice

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def _sample_layer_choice(self, mutable):
        self._lstm_next_step()
        logit = self.soft(self._h[-1])
        if self.temperature is not None:
            logit /= self.temperature
        if self.tanh_constant is not None:
            logit = self.tanh_constant * torch.tanh(logit)
        if mutable.key in self.bias_dict:
            logit += self.bias_dict[mutable.key]
        branch_id = torch.multinomial(F.softmax(logit, dim=-1), 1).view(-1)
        log_prob = self.cross_entropy_loss(logit, branch_id)
        self.sample_log_prob += self.entropy_reduction(log_prob)
        entropy = (log_prob * torch.exp(-log_prob)).detach()  # pylint: disable=invalid-unary-operand-type
        self.sample_entropy += self.entropy_reduction(entropy)
        self._inputs = self.embedding(branch_id)
        return F.one_hot(branch_id, num_classes=self.max_layer_choice).bool().view(-1) 
开发者ID:microsoft,项目名称:nni,代码行数:18,代码来源:mutator.py

示例14: sample_final

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def sample_final(self):
        """
        Generate the final chosen architecture.

        Returns
        -------
        dict
            the choice of each mutable, i.e., LayerChoice
        """
        result = dict()
        for mutable in self.undedup_mutables:
            assert isinstance(mutable, LayerChoice)
            index, _ = mutable.registered_module.chosen_index
            # pylint: disable=not-callable
            result[mutable.key] = F.one_hot(torch.tensor(index), num_classes=len(mutable)).view(-1).bool()
        return result 
开发者ID:microsoft,项目名称:nni,代码行数:18,代码来源:mutator.py

示例15: sample_search

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import one_hot [as 别名]
def sample_search(self):
        """
        Sample a random candidate.
        """
        result = dict()
        for mutable in self.mutables:
            if isinstance(mutable, LayerChoice):
                gen_index = torch.randint(high=len(mutable), size=(1, ))
                result[mutable.key] = F.one_hot(gen_index, num_classes=len(mutable)).view(-1).bool()
            elif isinstance(mutable, InputChoice):
                if mutable.n_chosen is None:
                    result[mutable.key] = torch.randint(high=2, size=(mutable.n_candidates,)).view(-1).bool()
                else:
                    perm = torch.randperm(mutable.n_candidates)
                    mask = [i in perm[:mutable.n_chosen] for i in range(mutable.n_candidates)]
                    result[mutable.key] = torch.tensor(mask, dtype=torch.bool)  # pylint: disable=not-callable
        return result 
开发者ID:microsoft,项目名称:nni,代码行数:19,代码来源:mutator.py


注:本文中的torch.nn.functional.one_hot方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。