当前位置: 首页>>代码示例>>Python>>正文


Python functional.normalize方法代码示例

本文整理汇总了Python中torch.nn.functional.normalize方法的典型用法代码示例。如果您正苦于以下问题:Python functional.normalize方法的具体用法?Python functional.normalize怎么用?Python functional.normalize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.normalize方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def forward(self, x, edge_index):
        """
        Forward propagation pass with features an indices.
        :param x: Feature matrix.
        :param edge_index: Indices.
        """
        edge_index, _ = remove_self_loops(edge_index, None)
        row, col = edge_index

        if self.norm:
            out = scatter_mean(x[col], row, dim=0, dim_size=x.size(0))
        else:
            out = scatter_add(x[col], row, dim=0, dim_size=x.size(0))

        out = torch.cat((out, x), 1)
        out = torch.matmul(out, self.weight)

        if self.bias is not None:
            out = out + self.bias
        if self.norm_embed:
            out = F.normalize(out, p=2, dim=-1)
        return out 
开发者ID:benedekrozemberczki,项目名称:SGCN,代码行数:24,代码来源:signedsageconvolution.py

示例2: rand_rot

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def rand_rot(N, dtype=None, max_rot_angle=float(math.pi),
             axes=(1, 1, 1), get_ss=False):

    rand_axis = torch.zeros((N, 3)).type(dtype).normal_()

    # apply the axes mask
    axes = torch.Tensor(axes).type(dtype)
    rand_axis = axes[None, :] * rand_axis

    rand_axis = Fu.normalize(rand_axis, dim=1, p=2)
    rand_angle = torch.ones(N).type(dtype).uniform_(0, max_rot_angle)
    R_ss_rand = rand_axis * rand_angle[:, None]
    R_rand = so3_exponential_map(R_ss_rand)

    if get_ss:
        return R_rand, R_ss_rand
    else:
        return R_rand 
开发者ID:facebookresearch,项目名称:c3dpo_nrsfm,代码行数:20,代码来源:so3.py

示例3: loss

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def loss(self, scores, true_pos, lamb=1e-7):
        loss = F.multi_margin_loss(scores, true_pos, margin=self.margin)
        if self.use_local_only:
            return loss

        # regularization
        X = F.normalize(self.rel_embs)
        diff = (X.view(self.n_rels, 1, -1) - X.view(1, self.n_rels, -1)).pow(2).sum(dim=2).add_(1e-5).sqrt()
        diff = diff * (diff < 1).float()
        loss -= torch.sum(diff).mul(lamb)

        X = F.normalize(self.ew_embs)
        diff = (X.view(self.n_rels, 1, -1) - X.view(1, self.n_rels, -1)).pow(2).sum(dim=2).add_(1e-5).sqrt()
        diff = diff * (diff < 1).float()
        loss -= torch.sum(diff).mul(lamb)
        return loss 
开发者ID:lephong,项目名称:mulrel-nel,代码行数:18,代码来源:mulrel_ranker.py

示例4: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def __init__(
        self, in_features, out_features, bias=True, coeff=0.97, n_iterations=None, atol=None, rtol=None, **unused_kwargs
    ):
        del unused_kwargs
        super(SpectralNormLinear, self).__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.coeff = coeff
        self.n_iterations = n_iterations
        self.atol = atol
        self.rtol = rtol
        self.weight = nn.Parameter(torch.Tensor(out_features, in_features))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

        h, w = self.weight.shape
        self.register_buffer('scale', torch.tensor(0.))
        self.register_buffer('u', F.normalize(self.weight.new_empty(h).normal_(0, 1), dim=0))
        self.register_buffer('v', F.normalize(self.weight.new_empty(w).normal_(0, 1), dim=0))
        self.compute_weight(True, 200) 
开发者ID:rtqichen,项目名称:residual-flows,代码行数:25,代码来源:lipschitz.py

示例5: _initialize_u_v

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def _initialize_u_v(self):
        if self.kernel_size == (1, 1):
            self.register_buffer('u', F.normalize(self.weight.new_empty(self.out_channels).normal_(0, 1), dim=0))
            self.register_buffer('v', F.normalize(self.weight.new_empty(self.in_channels).normal_(0, 1), dim=0))
        else:
            c, h, w = self.in_channels, int(self.spatial_dims[0].item()), int(self.spatial_dims[1].item())
            with torch.no_grad():
                num_input_dim = c * h * w
                v = F.normalize(torch.randn(num_input_dim).to(self.weight), dim=0, eps=1e-12)
                # forward call to infer the shape
                u = F.conv2d(v.view(1, c, h, w), self.weight, stride=self.stride, padding=self.padding, bias=None)
                num_output_dim = u.shape[0] * u.shape[1] * u.shape[2] * u.shape[3]
                self.out_shape = u.shape
                # overwrite u with random init
                u = F.normalize(torch.randn(num_output_dim).to(self.weight), dim=0, eps=1e-12)

                self.register_buffer('u', u)
                self.register_buffer('v', v) 
开发者ID:rtqichen,项目名称:residual-flows,代码行数:20,代码来源:lipschitz.py

示例6: normalize_u

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def normalize_u(u, codomain, out=None):
    if not torch.is_tensor(codomain) and codomain == 2:
        u = F.normalize(u, p=2, dim=0, out=out)
    elif codomain == float('inf'):
        u = projmax_(u)
    else:
        uabs = torch.abs(u)
        uph = u / uabs
        uph[torch.isnan(uph)] = 1
        uabs = uabs / torch.max(uabs)
        uabs = uabs**(codomain - 1)
        if codomain == 1:
            u = uph * uabs / vector_norm(uabs, float('inf'))
        else:
            u = uph * uabs / vector_norm(uabs, codomain / (codomain - 1))
    return u 
开发者ID:rtqichen,项目名称:residual-flows,代码行数:18,代码来源:mixed_lipschitz.py

示例7: __call__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def __call__(self, data):
        assert 'face' in data
        pos, face = data.pos, data.face

        vec1 = pos[face[1]] - pos[face[0]]
        vec2 = pos[face[2]] - pos[face[0]]
        face_norm = F.normalize(vec1.cross(vec2), p=2, dim=-1)  # [F, 3]

        idx = torch.cat([face[0], face[1], face[2]], dim=0)
        face_norm = face_norm.repeat(3, 1)

        norm = scatter_add(face_norm, idx, dim=0, dim_size=pos.size(0))
        norm = F.normalize(norm, p=2, dim=-1)  # [N, 3]

        data.norm = norm

        return data 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:19,代码来源:generate_mesh_normals.py

示例8: __call__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def __call__(self, data):
        pos = data.pos

        if self.max_points > 0 and pos.size(0) > self.max_points:
            perm = torch.randperm(pos.size(0))
            pos = pos[perm[:self.max_points]]

        pos = pos - pos.mean(dim=0, keepdim=True)
        C = torch.matmul(pos.t(), pos)
        e, v = torch.eig(C, eigenvectors=True)  # v[:,j] is j-th eigenvector

        data.pos = torch.matmul(data.pos, v)

        if 'norm' in data:
            data.norm = F.normalize(torch.matmul(data.norm, v))

        return data 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:19,代码来源:normalize_rotation.py

示例9: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def __init__(self, in_channels: Union[int, Tuple[int, int]],
                 out_channels: int, normalize: bool = False,
                 bias: bool = True, **kwargs):  # yapf: disable
        super(SAGEConv, self).__init__(aggr='mean', **kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.normalize = normalize

        if isinstance(in_channels, int):
            in_channels = (in_channels, in_channels)

        self.lin_l = Linear(in_channels[0], out_channels, bias=bias)
        self.lin_r = Linear(in_channels[1], out_channels, bias=False)

        self.reset_parameters() 
开发者ID:rusty1s,项目名称:pytorch_geometric,代码行数:18,代码来源:sage_conv.py

示例10: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def forward(self, x):
        x0 = self.linear0(x[0])
        x1 = self.linear1(x[1])

        if self.dropout_input > 0:
            x0 = F.dropout(x0, p=self.dropout_input, training=self.training)
            x1 = F.dropout(x1, p=self.dropout_input, training=self.training)

        m0 = self.merge_linear0(x0)
        m1 = self.merge_linear1(x1)
        m = m0 * m1
        m = m.view(-1, self.rank, self.mm_dim)
        z = torch.sum(m, 1)
        if self.normalize:
            z = torch.sqrt(F.relu(z)) - torch.sqrt(F.relu(-z))
            z = F.normalize(z, p=2)

        if self.dropout_pre_lin > 0:
            z = F.dropout(z, p=self.dropout_pre_lin, training=self.training)

        z = self.linear_out(z)

        if self.dropout_output > 0:
            z = F.dropout(z, p=self.dropout_output, training=self.training)
        return z 
开发者ID:Cadene,项目名称:block.bootstrap.pytorch,代码行数:27,代码来源:fusions.py

示例11: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def __init__(self,
            input_dims,
            output_dim,
            mm_dim=1200,
            activ_input='relu',
            activ_output='relu',
            normalize=False,
            dropout_input=0.,
            dropout_pre_lin=0.,
            dropout_output=0.):
        super(MLB, self).__init__()
        self.input_dims = input_dims
        self.mm_dim = mm_dim
        self.output_dim = output_dim
        self.activ_input = activ_input
        self.activ_output = activ_output
        self.normalize = normalize
        self.dropout_input = dropout_input
        self.dropout_pre_lin = dropout_pre_lin
        self.dropout_output = dropout_output
        # Modules
        self.linear0 = nn.Linear(input_dims[0], mm_dim)
        self.linear1 = nn.Linear(input_dims[1], mm_dim)
        self.linear_out = nn.Linear(mm_dim, output_dim)
        self.n_params = sum(p.numel() for p in self.parameters() if p.requires_grad) 
开发者ID:Cadene,项目名称:block.bootstrap.pytorch,代码行数:27,代码来源:fusions.py

示例12: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def forward(self, inputs, labels):
        cos_th = F.linear(inputs, F.normalize(self.weight))
        cos_th = cos_th.clamp(-1, 1)
        sin_th = torch.sqrt(1.0 - torch.pow(cos_th, 2))
        cos_th_m = cos_th * self.cos_m - sin_th * self.sin_m
        cos_th_m = torch.where(cos_th > self.th, cos_th_m, cos_th - self.mm)

        cond_v = cos_th - self.th
        cond = cond_v <= 0
        cos_th_m[cond] = (cos_th - self.mm)[cond]

        if labels.dim() == 1:
            labels = labels.unsqueeze(-1)
        onehot = torch.zeros(cos_th.size()).cuda()
        onehot.scatter_(1, labels, 1)
        outputs = onehot * cos_th_m + (1.0 - onehot) * cos_th
        outputs = outputs * self.s
        return outputs 
开发者ID:pudae,项目名称:kaggle-humpback,代码行数:20,代码来源:identifier.py

示例13: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def __init__(self, num_nodes, num_sampled, embedding_size):
        super(NSLoss, self).__init__()
        self.num_nodes = num_nodes  
        self.num_sampled = num_sampled  
        self.embedding_size = embedding_size  
        self.weights = Parameter(torch.FloatTensor(num_nodes, embedding_size))  
        # [ (log(i+2) - log(i+1)) / log(num_nodes + 1)]
        self.sample_weights = F.normalize(
            torch.Tensor(
                [
                    (math.log(k + 2) - math.log(k + 1)) / math.log(num_nodes + 1)
                    for k in range(num_nodes)
                ]
            ),
            dim=0,
        )

        self.reset_parameters() 
开发者ID:dmlc,项目名称:dgl,代码行数:20,代码来源:main.py

示例14: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def forward(self, x, adj):
        if self.use_bn and not hasattr(self, 'bn'):
            self.bn = nn.BatchNorm1d(adj.size(1)).to(adj.device)

        if self.add_self:
            adj = adj + torch.eye(adj.size(0)).to(adj.device)

        if self.mean:
            adj = adj / adj.sum(1, keepdim=True)

        h_k_N = torch.matmul(adj, x)
        h_k = self.W(h_k_N)
        h_k = F.normalize(h_k, dim=2, p=2)
        h_k = F.relu(h_k)
        if self.use_bn:
            h_k = self.bn(h_k)
        return h_k 
开发者ID:dmlc,项目名称:dgl,代码行数:19,代码来源:graphsage.py

示例15: predict

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import normalize [as 别名]
def predict(self, x):
        batch_size, dims = x.size()
        query = F.normalize(self.query_proj(x), dim=1)

        # Find the k-nearest neighbors of the query
        scores = torch.matmul(query, torch.t(self.keys_var))
        cosine_similarity, topk_indices_var = torch.topk(scores, self.top_k, dim=1)

        # softmax of cosine similarities - embedding
        softmax_score = F.softmax(self.softmax_temperature * cosine_similarity)

        # retrive memory values - prediction
        y_hat_indices = topk_indices_var.data[:, 0]
        y_hat = self.values[y_hat_indices]

        return y_hat, softmax_score 
开发者ID:RUSH-LAB,项目名称:LSH_Memory,代码行数:18,代码来源:memory.py


注:本文中的torch.nn.functional.normalize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。