当前位置: 首页>>代码示例>>Python>>正文


Python functional.leaky_relu方法代码示例

本文整理汇总了Python中torch.nn.functional.leaky_relu方法的典型用法代码示例。如果您正苦于以下问题:Python functional.leaky_relu方法的具体用法?Python functional.leaky_relu怎么用?Python functional.leaky_relu使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.leaky_relu方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def __init__(self, rep_dim=128):
        super().__init__()

        self.rep_dim = rep_dim

        self.deconv1 = nn.ConvTranspose2d(int(self.rep_dim / (4 * 4)), 128, 5, bias=False, padding=2)
        nn.init.xavier_uniform_(self.deconv1.weight, gain=nn.init.calculate_gain('leaky_relu'))
        self.bn2d4 = nn.BatchNorm2d(128, eps=1e-04, affine=False)
        self.deconv2 = nn.ConvTranspose2d(128, 64, 5, bias=False, padding=2)
        nn.init.xavier_uniform_(self.deconv2.weight, gain=nn.init.calculate_gain('leaky_relu'))
        self.bn2d5 = nn.BatchNorm2d(64, eps=1e-04, affine=False)
        self.deconv3 = nn.ConvTranspose2d(64, 32, 5, bias=False, padding=2)
        nn.init.xavier_uniform_(self.deconv3.weight, gain=nn.init.calculate_gain('leaky_relu'))
        self.bn2d6 = nn.BatchNorm2d(32, eps=1e-04, affine=False)
        self.deconv4 = nn.ConvTranspose2d(32, 3, 5, bias=False, padding=2)
        nn.init.xavier_uniform_(self.deconv4.weight, gain=nn.init.calculate_gain('leaky_relu')) 
开发者ID:lukasruff,项目名称:Deep-SAD-PyTorch,代码行数:18,代码来源:cifar10_LeNet.py

示例2: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, activation="leaky_relu", slope=0.01):
        """Creates an InPlace Activated Batch Normalization module

        Parameters
        ----------
        num_features : int
            Number of feature channels in the input and output.
        eps : float
            Small constant to prevent numerical issues.
        momentum : float
            Momentum factor applied to compute running statistics as.
        affine : bool
            If `True` apply learned scale and shift transformation after normalization.
        activation : str
            Name of the activation functions, one of: `leaky_relu`, `elu` or `none`.
        slope : float
            Negative slope for the `leaky_relu` activation.
        """
        super(InPlaceABN, self).__init__(num_features, eps, momentum, affine, activation, slope) 
开发者ID:miraiaroha,项目名称:ACAN,代码行数:21,代码来源:bn.py

示例3: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def forward(self, x):
        inv_var = torch.rsqrt(self.running_var + self.eps)
        if self.affine:
            alpha = self.weight * inv_var
            beta = self.bias - self.running_mean * alpha
        else:
            alpha = inv_var
            beta = - self.running_mean * alpha

        x.mul_(alpha.view(self._broadcast_shape(x)))
        x.add_(beta.view(self._broadcast_shape(x)))

        if self.activation == "relu":
            return functional.relu(x, inplace=True)
        elif self.activation == "leaky_relu":
            return functional.leaky_relu(x, negative_slope=self.activation_param, inplace=True)
        elif self.activation == "elu":
            return functional.elu(x, alpha=self.activation_param, inplace=True)
        elif self.activation == "identity":
            return x
        else:
            raise RuntimeError("Unknown activation function {}".format(self.activation)) 
开发者ID:mapillary,项目名称:seamseg,代码行数:24,代码来源:misc.py

示例4: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def forward(self, x):
        if hasattr(self, "proj_conv"):
            residual = self.proj_conv(x)
            residual = self.proj_bn(residual)
        else:
            residual = x

        x = self.convs(x) + residual

        if self.convs.bn1.activation == "relu":
            return functional.relu(x, inplace=True)
        elif self.convs.bn1.activation == "leaky_relu":
            return functional.leaky_relu(x, negative_slope=self.convs.bn1.activation_param, inplace=True)
        elif self.convs.bn1.activation == "elu":
            return functional.elu(x, alpha=self.convs.bn1.activation_param, inplace=True)
        elif self.convs.bn1.activation == "identity":
            return x
        else:
            raise RuntimeError("Unknown activation function {}".format(self.activation)) 
开发者ID:mapillary,项目名称:seamseg,代码行数:21,代码来源:residual.py

示例5: correlation1d_cost

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def correlation1d_cost(reference_fm, target_fm, max_disp=192, start_disp=0, dilation=1, disp_sample=None,
                       kernel_size=1, stride=1, padding=0, dilation_patch=1,):
    # for a pixel of left image at (x, y), it will calculates correlation cost volume
    # with pixel of right image at (xr, y), where xr in [x-max_disp, x+max_disp]
    # but we only need the left half part, i.e., [x-max_disp, 0]
    correlation_sampler = SpatialCorrelationSampler(patch_size=(1, max_disp * 2 - 1),
                                                    kernel_size=kernel_size,
                                                    stride=stride, padding=padding,
                                                    dilation_patch=dilation_patch)
    # [B, 1, max_disp*2-1, H, W]
    out = correlation_sampler(reference_fm, target_fm)

    # [B, max_disp*2-1, H, W]
    out = out.squeeze(1)

    # [B, max_disp, H, W], grad the left half searching part
    out = out[:, :max_disp, :, :]

    cost = F.leaky_relu(out, negative_slope=0.1, inplace=True)

    return cost 
开发者ID:DeepMotionAIResearch,项目名称:DenseMatchingBenchmark,代码行数:23,代码来源:correlation1d_cost.py

示例6: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def forward(self,x):
        encoded = x
        for i, (encoder,bencoder) in enumerate(zip(self.enc,self.benc)):
            if i == self.nlayers-1:
                encoded = encoded.view(encoded.size(0), -1)
            encoded = encoder(encoded)
            if i < self.nlayers-1:
                encoded = bencoder(encoded)
                encoded = F.leaky_relu(encoded, negative_slope=self.reluslope)
        out = encoded
        for i, (decoder,bdecoder) in reversed(list(enumerate(zip(self.dec,self.bdec)))):
            if i == self.nlayers-1:
                out = out.view(out.size(0), -1, 1, 1)
            out = decoder(out)
            if i:
                out = bdecoder(out)
                out = F.leaky_relu(out, negative_slope=self.reluslope)
        return encoded, out 
开发者ID:shahsohil,项目名称:DCC,代码行数:20,代码来源:extractconvSDAE.py

示例7: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def forward(self, x):
        # Pass Add bias.
        x += self.bias

        # Evaluate activation function.
        if self.act == "linear":
            pass
        elif self.act == 'lrelu':
            x = F.leaky_relu(x, self.alpha, inplace=True)
            x = x * np.sqrt(2)  # original repo def_gain=np.sqrt(2).

        # Scale by gain.
        if self.gain != 1:
            x = x * self.gain

        return x 
开发者ID:tomguluson92,项目名称:StyleGAN2_PyTorch,代码行数:18,代码来源:stylegan2.py

示例8: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def __init__(self, n_class=10):
        super().__init__()

        def conv(in_channel, out_channel, stride=2,
                 self_attention=False):
            return ConvBlock(in_channel, out_channel, stride=stride,
                             bn=False, activation=leaky_relu,
                             upsample=False, self_attention=self_attention)

        self.conv = nn.Sequential(conv(3, 128),
                                  conv(128, 256),
                                  conv(256, 512, stride=1,
                                       self_attention=True),
                                  conv(512, 512),
                                  conv(512, 512),
                                  conv(512, 512))

        self.linear = spectral_init(nn.Linear(512, 1))

        self.embed = nn.Embedding(n_class, 512)
        self.embed.weight.data.uniform_(-0.1, 0.1)
        self.embed = spectral_norm(self.embed) 
开发者ID:rosinality,项目名称:sagan-pytorch,代码行数:24,代码来源:model.py

示例9: cum_return

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def cum_return(self, traj):
        '''calculate cumulative return of trajectory'''
        sum_rewards = 0
        sum_abs_rewards = 0
        for x in traj:
            x = x.permute(0,3,1,2) #get into NCHW format
            x = F.leaky_relu(self.conv1(x))
            x = F.leaky_relu(self.conv2(x))
            x = F.leaky_relu(self.conv3(x))
            x = F.leaky_relu(self.conv4(x))
            x = x.view(-1, 784)
            x = F.leaky_relu(self.fc1(x))
            r = torch.sigmoid(self.fc2(x))
            sum_rewards += r
            sum_abs_rewards += torch.abs(r)
        return sum_rewards, sum_abs_rewards 
开发者ID:hiwonjoon,项目名称:ICML2019-TREX,代码行数:18,代码来源:VisualizeAtariLearnedReward.py

示例10: cum_return

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def cum_return(self, traj):
        '''calculate cumulative return of trajectory'''
        sum_rewards = 0
        sum_abs_rewards = 0
        x = traj.permute(0,3,1,2) #get into NCHW format
        #compute forward pass of reward network
        x = F.leaky_relu(self.conv1(x))
        x = F.leaky_relu(self.conv2(x))
        x = F.leaky_relu(self.conv3(x))
        x = F.leaky_relu(self.conv4(x))
        x = x.view(-1, 784)
        x = F.leaky_relu(self.fc1(x))
        r = self.fc2(x)
        sum_rewards += torch.sum(r)
        sum_abs_rewards += torch.sum(torch.abs(r))
        return sum_rewards, sum_abs_rewards 
开发者ID:hiwonjoon,项目名称:ICML2019-TREX,代码行数:18,代码来源:LearnAtariRewardAGC.py

示例11: cum_return

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def cum_return(self, traj):
        '''calculate cumulative return of trajectory'''
        sum_rewards = 0
        sum_abs_rewards = 0
        x = traj.permute(0,3,1,2) #get into NCHW format
        #compute forward pass of reward network (we parallelize across frames so batch size is length of partial trajectory)
        x = F.leaky_relu(self.conv1(x))
        x = F.leaky_relu(self.conv2(x))
        x = F.leaky_relu(self.conv3(x))
        x = F.leaky_relu(self.conv4(x))
        x = x.view(-1, 784)
        x = F.leaky_relu(self.fc1(x))
        r = self.fc2(x)
        sum_rewards += torch.sum(r)
        sum_abs_rewards += torch.sum(torch.abs(r))
        return sum_rewards, sum_abs_rewards 
开发者ID:hiwonjoon,项目名称:ICML2019-TREX,代码行数:18,代码来源:LearnAtariReward.py

示例12: prune_model_keep_size

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def prune_model_keep_size(model, prune_idx, CBL_idx, CBLidx2mask):

    pruned_model = deepcopy(model)
    for idx in prune_idx:
        mask = torch.from_numpy(CBLidx2mask[idx]).cuda()
        bn_module = pruned_model.module_list[idx][1]

        bn_module.weight.data.mul_(mask)

        activation = F.leaky_relu((1 - mask) * bn_module.bias.data, 0.1)

        # 两个上采样层前的卷积层
        next_idx_list = [idx + 1]
        if idx == 79:
            next_idx_list.append(84)
        elif idx == 91:
            next_idx_list.append(96)

        for next_idx in next_idx_list:
            next_conv = pruned_model.module_list[next_idx][0]
            conv_sum = next_conv.weight.data.sum(dim=(2, 3))
            offset = conv_sum.matmul(activation.reshape(-1, 1)).reshape(-1)
            if next_idx in CBL_idx:
                next_bn = pruned_model.module_list[next_idx][1]
                next_bn.running_mean.data.sub_(offset)
            else:
                next_conv.bias.data.add_(offset)

        bn_module.bias.data.mul_(mask)

    return pruned_model 
开发者ID:zbyuan,项目名称:pruning_yolov3,代码行数:33,代码来源:prune_utils.py

示例13: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def forward(self, x):
        x = functional.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias,
                                  self.training, self.momentum, self.eps)

        if self.activation == ACT_RELU:
            return functional.relu(x, inplace=True)
        elif self.activation == ACT_LEAKY_RELU:
            return functional.leaky_relu(x, negative_slope=self.slope, inplace=True)
        elif self.activation == ACT_ELU:
            return functional.elu(x, inplace=True)
        else:
            return x 
开发者ID:miraiaroha,项目名称:ACAN,代码行数:14,代码来源:bn.py

示例14: __repr__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def __repr__(self):
        rep = '{name}({num_features}, eps={eps}, momentum={momentum},' \
              ' affine={affine}, activation={activation}'
        if self.activation == "leaky_relu":
            rep += ', slope={slope})'
        else:
            rep += ')'
        return rep.format(name=self.__class__.__name__, **self.__dict__) 
开发者ID:miraiaroha,项目名称:ACAN,代码行数:10,代码来源:bn.py

示例15: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import leaky_relu [as 别名]
def forward(self, x):
        x = x.view(-1, 3, 32, 32)
        x = self.conv1(x)
        x = self.pool(F.leaky_relu(self.bn2d1(x)))
        x = self.conv2(x)
        x = self.pool(F.leaky_relu(self.bn2d2(x)))
        x = self.conv3(x)
        x = self.pool(F.leaky_relu(self.bn2d3(x)))
        x = x.view(int(x.size(0)), -1)
        x = self.fc1(x)
        return x 
开发者ID:lukasruff,项目名称:Deep-SAD-PyTorch,代码行数:13,代码来源:cifar10_LeNet.py


注:本文中的torch.nn.functional.leaky_relu方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。