本文整理汇总了Python中torch.nn.functional.kl_div方法的典型用法代码示例。如果您正苦于以下问题:Python functional.kl_div方法的具体用法?Python functional.kl_div怎么用?Python functional.kl_div使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.kl_div方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
out = F.relu(self.conv1(x, edge_index))
out, edge_index, _, batch, perm, score = self.pool1(
out, edge_index, None, batch, attn=x)
ratio = out.size(0) / x.size(0)
out = F.relu(self.conv2(out, edge_index))
out = global_add_pool(out, batch)
out = self.lin(out).view(-1)
attn_loss = F.kl_div(torch.log(score + 1e-14), data.attn[perm],
reduction='none')
attn_loss = scatter_mean(attn_loss, batch)
return out, attn_loss, ratio
示例2: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def forward(self, data):
x, edge_index, batch = data.x, data.edge_index, data.batch
x = F.relu(self.conv1(x, edge_index))
x, edge_index, _, batch, perm, score = self.pool1(
x, edge_index, None, batch)
x = F.relu(self.conv2(x, edge_index))
x, edge_index, _, batch, perm, score = self.pool2(
x, edge_index, None, batch)
ratio = x.size(0) / data.x.size(0)
x = F.relu(self.conv3(x, edge_index))
x = global_max_pool(x, batch)
x = self.lin(x).view(-1)
attn_loss = F.kl_div(
torch.log(score + 1e-14), data.attn[perm], reduction='none')
attn_loss = scatter_mean(attn_loss, batch)
return x, attn_loss, ratio
示例3: cross_entropy
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def cross_entropy(pred,
label,
weight=None,
reduction='mean',
avg_factor=None,
label_smooth=None):
# element-wise losses
if label_smooth is None:
loss = F.cross_entropy(pred, label, reduction='none')
else:
num_classes = pred.size(1)
target = F.one_hot(label, num_classes).type_as(pred)
target = target.sub_(label_smooth).clamp_(0).add_(label_smooth / num_classes)
loss = F.kl_div(pred.log_softmax(1), target, reduction='none').sum(1)
# apply weights and do the reduction
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(
loss, weight=weight, reduction=reduction, avg_factor=avg_factor)
return loss
示例4: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def forward(self, input, target):
y_true = target
y_pred = torch.sigmoid(input)
y_true = y_true.view(-1, 1)
y_pred = y_pred.view(-1, 1)
y_true_1 = y_true
y_pred_1 = y_pred
y_true_2 = y_true
y_pred_2 = y_pred
y_pred_1 = torch.clamp(y_pred_1, 1e-7, 1.0)
y_true_2 = torch.clamp(y_true_2, 1e-4, 1.0)
loss_ce = F.kl_div(torch.log(y_pred_1), y_true_1)
loss_rce = F.kl_div(torch.log(y_true_2), y_pred_2)
return self.alpha*loss_ce + self.beta*loss_rce
示例5: softmax_kl_loss
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def softmax_kl_loss(input_logits, target_logits):
"""Takes softmax on both sides and returns KL divergence
Note:
- Returns the sum over all examples. Divide by the batch size afterwards
if you want the mean.
- Sends gradients to inputs but not the targets.
"""
assert input_logits.size() == target_logits.size()
input_log_softmax = F.log_softmax(input_logits, dim=1)
target_softmax = F.softmax(target_logits, dim=1)
# return F.kl_div(input_log_softmax, target_softmax)
kl_div = F.kl_div(input_log_softmax, target_softmax, reduction='none')
# mean_kl_div = torch.mean(0.2*kl_div[:,0,...]+0.8*kl_div[:,1,...])
return kl_div
示例6: warmup_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.warmup_epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Warmup Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args)
args.p_targets = target_distribution(probs)
示例7: Baseline_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
for batch_idx, (x, label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args)
if epoch % args.update_interval==0:
print('updating target ...')
args.p_targets = target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例8: Baseline_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.epochs):
loss_record = AverageMeter()
acc_record = AverageMeter()
model.train()
for batch_idx, (x, _, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
output = model(x)
prob = feat2prob(output, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs= test(model, eva_loader, args, epoch)
if epoch%args.update_interval == 0:
print('updating target ...')
args.p_targets = target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例9: warmup_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.warmup_epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args)
args.p_targets = target_distribution(probs)
示例10: warmup_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.warmup_epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args)
args.p_targets = target_distribution(probs)
示例11: Baseline_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args)
if epoch % args.update_interval ==0:
print('updating target ...')
args.p_targets = target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例12: warmup_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def warmup_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.warmup_lr, momentum=args.momentum, weight_decay=args.weight_decay)
for epoch in range(args.warmup_epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Warmup_train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args, epoch)
args.p_targets = target_distribution(probs)
示例13: Baseline_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def Baseline_train(model, train_loader, eva_loader, args):
optimizer = SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
exp_lr_scheduler.step()
for batch_idx, ((x, _), label, idx) in enumerate(tqdm(train_loader)):
x = x.to(device)
_, feat = model(x)
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
loss_record.update(loss.item(), x.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eva_loader, args, epoch)
if epoch % args.update_interval==0:
print('updating target ...')
args.p_targets = target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例14: Baseline_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def Baseline_train(model, alphabetStr, train_loader, eval_loader, args):
optimizer = Adam(model.parameters(), lr=args.lr)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
for batch_idx, (x, g_x, _, idx) in enumerate(train_loader):
_, feat = model(x.to(device))
prob = feat2prob(feat, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_record.update(loss.item(), x.size(0))
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eval_loader, args)
if epoch % args.update_interval==0:
args.p_targets= target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))
示例15: PI_train
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import kl_div [as 别名]
def PI_train(model, alphabetStr, train_loader, eval_loader, args):
optimizer = Adam(model.parameters(), lr=args.lr)
for epoch in range(args.epochs):
loss_record = AverageMeter()
model.train()
w = args.rampup_coefficient * ramps.sigmoid_rampup(epoch, args.rampup_length)
for batch_idx, (x, g_x, _, idx) in enumerate(train_loader):
_, feat = model(x.to(device))
_, feat_g = model(g_x.to(device))
prob = feat2prob(feat, model.center)
prob_g = feat2prob(feat_g, model.center)
loss = F.kl_div(prob.log(), args.p_targets[idx].float().to(device))
mse_loss = F.mse_loss(prob, prob_g)
loss=loss + w*mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_record.update(loss.item(), x.size(0))
print('Train Epoch: {} Avg Loss: {:.4f}'.format(epoch, loss_record.avg))
_, _, _, probs = test(model, eval_loader, args)
if epoch % args.update_interval==0:
args.p_targets= target_distribution(probs)
torch.save(model.state_dict(), args.model_dir)
print("model saved to {}.".format(args.model_dir))