本文整理汇总了Python中torch.nn.functional.interpolate方法的典型用法代码示例。如果您正苦于以下问题:Python functional.interpolate方法的具体用法?Python functional.interpolate怎么用?Python functional.interpolate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.interpolate方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, x):
"""
forward pass of the block
:param x: input
:return: y => output
"""
from torch.nn.functional import interpolate
y = interpolate(x, scale_factor=2)
y = self.pixNorm(self.lrelu(self.conv_1(y)))
y = self.pixNorm(self.lrelu(self.conv_2(y)))
return y
# function to calculate the Exponential moving averages for the Generator weights
# This function updates the exponential average weights based on the current training
示例2: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, inputs):
"""Forward function."""
assert len(inputs) == self.num_ins
outs = [inputs[0]]
for i in range(1, self.num_ins):
outs.append(
F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear'))
out = torch.cat(outs, dim=1)
if out.requires_grad and self.with_cp:
out = checkpoint(self.reduction_conv, out)
else:
out = self.reduction_conv(out)
outs = [out]
for i in range(1, self.num_outs):
outs.append(self.pooling(out, kernel_size=2**i, stride=2**i))
outputs = []
for i in range(self.num_outs):
if outs[i].requires_grad and self.with_cp:
tmp_out = checkpoint(self.fpn_convs[i], outs[i])
else:
tmp_out = self.fpn_convs[i](outs[i])
outputs.append(tmp_out)
return tuple(outputs)
示例3: test_resize_methods
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def test_resize_methods():
inputs_x = torch.randn([2, 256, 128, 128])
target_resize_sizes = [(128, 128), (256, 256)]
resize_methods_list = ['nearest', 'bilinear']
for method in resize_methods_list:
merge_cell = BaseMergeCell(upsample_mode=method)
for target_size in target_resize_sizes:
merge_cell_out = merge_cell._resize(inputs_x, target_size)
gt_out = F.interpolate(inputs_x, size=target_size, mode=method)
assert merge_cell_out.equal(gt_out)
target_size = (64, 64) # resize to a smaller size
merge_cell = BaseMergeCell()
merge_cell_out = merge_cell._resize(inputs_x, target_size)
kernel_size = inputs_x.shape[-1] // target_size[-1]
gt_out = F.max_pool2d(
inputs_x, kernel_size=kernel_size, stride=kernel_size)
assert (merge_cell_out == gt_out).all()
示例4: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, inputs):
assert len(inputs) == self.num_ins
outs = [inputs[0]]
for i in range(1, self.num_ins):
outs.append(
F.interpolate(inputs[i], scale_factor=2**i, mode='bilinear'))
out = torch.cat(outs, dim=1)
if out.requires_grad and self.with_cp:
out = checkpoint(self.reduction_conv, out)
else:
out = self.reduction_conv(out)
outs = [out]
for i in range(1, self.num_outs):
outs.append(self.pooling(out, kernel_size=2**i, stride=2**i))
outputs = []
for i in range(self.num_outs):
if outs[i].requires_grad and self.with_cp:
tmp_out = checkpoint(self.fpn_convs[i], outs[i])
else:
tmp_out = self.fpn_convs[i](outs[i])
outputs.append(tmp_out)
return tuple(outputs)
示例5: create_grid
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def create_grid(self, samples, img_files):
"""
utility function to create a grid of GAN samples
:param samples: generated samples for storing list[Tensors]
:param img_files: list of names of files to write
:return: None (saves multiple files)
"""
from torchvision.utils import save_image
from torch.nn.functional import interpolate
from numpy import sqrt, power
# dynamically adjust the colour of the images
samples = [Generator.adjust_dynamic_range(sample) for sample in samples]
# resize the samples to have same resolution:
for i in range(len(samples)):
samples[i] = interpolate(samples[i],
scale_factor=power(2,
self.depth - 1 - i))
# save the images:
for sample, img_file in zip(samples, img_files):
save_image(sample, img_file, nrow=int(sqrt(sample.shape[0])),
normalize=True, scale_each=True, padding=0)
示例6: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, x, proposals):
resolution = cfg.PRCNN.ROI_XFORM_RESOLUTION
x = self.pooler(x, proposals)
roi_feature = x
if self.conv_before_asppv3 is not None:
x = self.conv_before_asppv3(x)
asppv3_out = [F.interpolate(self.im_pool(x), scale_factor=resolution, mode="bilinear", align_corners=False)]
for i in range(len(self.asppv3)):
asppv3_out.append(self.asppv3[i](x))
asppv3_out = torch.cat(asppv3_out, 1)
asppv3_out = self.feat(asppv3_out)
if self.conv_after_asppv3 is not None:
x = self.conv_after_asppv3(asppv3_out)
return x, roi_feature
示例7: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, x):
outs = [x[0]]
for i in range(1, len(x)):
outs.append(F.interpolate(x[i], scale_factor=2**i, mode='bilinear'))
out = torch.cat(outs, dim=1)
out = self.reduction_conv(out)
outs = [out]
for i in range(1, self.num_output):
outs.append(self.pooling(out, kernel_size=2**i, stride=2**i))
fpn_output_blobs = []
for i in range(self.num_output):
fpn_output_blobs.append(self.fpn_conv[i](outs[i]))
# use all levels
return fpn_output_blobs # [P2 - P6]
示例8: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, xs):
xs = xs[self.min_level:self.min_level + self.levels]
ref_size = xs[0].shape[-2:]
interp_params = {"mode": self.interpolation}
if self.interpolation == "bilinear":
interp_params["align_corners"] = False
for i, output in enumerate(self.output):
xs[i] = output(xs[i])
if i > 0:
xs[i] = functional.interpolate(xs[i], size=ref_size, **interp_params)
xs = torch.cat(xs, dim=1)
xs = self.conv_sem(xs)
return xs
示例9: _forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
return up1 + up2
示例10: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, img, lbl=None, size=None):
x = self.extractor(img)
x = self.fc0(x)
x, mu = self.emau(x)
x = self.fc1(x)
x = self.fc2(x)
if size is None:
size = img.size()[-2:]
pred = F.interpolate(x, size=size, mode='bilinear', align_corners=True)
if self.training and lbl is not None:
loss = self.crit(pred, lbl)
return loss, mu
else:
return pred
示例11: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, x):
pool = self.image_pooling(x)
pool = F.interpolate(pool, size=x.shape[2:], mode='bilinear', align_corners=True)
x0 = self.aspp0(x)
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x = torch.cat((pool, x0, x1, x2, x3), dim=1)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.dropout(x)
return x
# -----------------------------------------------------------------
# For PSPNet, fast_scnn
# -----------------------------------------------------------------
示例12: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, inputs):
"""Forward function."""
feats = [
adapt_conv(inputs[i + self.start_level])
for i, adapt_conv in enumerate(self.adapt_convs)
]
for (i, module_name) in enumerate(self.fpn):
idx_1, idx_2 = int(module_name[1]), int(module_name[2])
res = self.fpn[module_name](feats[idx_1], feats[idx_2])
feats.append(res)
ret = []
for (idx, input_idx) in zip([9, 8, 7], [1, 2, 3]): # add P3, P4, P5
feats1, feats2 = feats[idx], feats[5]
feats2_resize = F.interpolate(
feats2,
size=feats1.size()[2:],
mode='bilinear',
align_corners=False)
feats_sum = feats1 + feats2_resize
ret.append(
F.interpolate(
feats_sum,
size=inputs[input_idx].size()[2:],
mode='bilinear',
align_corners=False))
for submodule in self.extra_downsamples:
ret.append(submodule(ret[-1]))
return tuple(ret)
示例13: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def forward(self, inputs):
"""Forward function."""
assert len(inputs) == self.num_levels
# step 1: gather multi-level features by resize and average
feats = []
gather_size = inputs[self.refine_level].size()[2:]
for i in range(self.num_levels):
if i < self.refine_level:
gathered = F.adaptive_max_pool2d(
inputs[i], output_size=gather_size)
else:
gathered = F.interpolate(
inputs[i], size=gather_size, mode='nearest')
feats.append(gathered)
bsf = sum(feats) / len(feats)
# step 2: refine gathered features
if self.refine_type is not None:
bsf = self.refine(bsf)
# step 3: scatter refined features to multi-levels by a residual path
outs = []
for i in range(self.num_levels):
out_size = inputs[i].size()[2:]
if i < self.refine_level:
residual = F.interpolate(bsf, size=out_size, mode='nearest')
else:
residual = F.adaptive_max_pool2d(bsf, output_size=out_size)
outs.append(residual + inputs[i])
return tuple(outs)
示例14: _mask_point_forward_test
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def _mask_point_forward_test(self, x, rois, label_pred, mask_pred,
img_metas):
"""Mask refining process with point head in testing."""
refined_mask_pred = mask_pred.clone()
for subdivision_step in range(self.test_cfg.subdivision_steps):
refined_mask_pred = F.interpolate(
refined_mask_pred,
scale_factor=self.test_cfg.scale_factor,
mode='bilinear',
align_corners=False)
# If `subdivision_num_points` is larger or equal to the
# resolution of the next step, then we can skip this step
num_rois, channels, mask_height, mask_width = \
refined_mask_pred.shape
if (self.test_cfg.subdivision_num_points >=
self.test_cfg.scale_factor**2 * mask_height * mask_width
and
subdivision_step < self.test_cfg.subdivision_steps - 1):
continue
point_indices, rel_roi_points = \
self.point_head.get_roi_rel_points_test(
refined_mask_pred, label_pred, cfg=self.test_cfg)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, rois, rel_roi_points, img_metas)
coarse_point_feats = point_sample(mask_pred, rel_roi_points)
mask_point_pred = self.point_head(fine_grained_point_feats,
coarse_point_feats)
point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
refined_mask_pred = refined_mask_pred.reshape(
num_rois, channels, mask_height * mask_width)
refined_mask_pred = refined_mask_pred.scatter_(
2, point_indices, mask_point_pred)
refined_mask_pred = refined_mask_pred.view(num_rois, channels,
mask_height, mask_width)
return refined_mask_pred
示例15: _resize
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import interpolate [as 别名]
def _resize(self, x, size):
if x.shape[-2:] == size:
return x
elif x.shape[-2:] < size:
return F.interpolate(x, size=size, mode=self.upsample_mode)
else:
assert x.shape[-2] % size[-2] == 0 and x.shape[-1] % size[-1] == 0
kernel_size = x.shape[-1] // size[-1]
x = F.max_pool2d(x, kernel_size=kernel_size, stride=kernel_size)
return x