本文整理汇总了Python中torch.nn.functional.instance_norm方法的典型用法代码示例。如果您正苦于以下问题:Python functional.instance_norm方法的具体用法?Python functional.instance_norm怎么用?Python functional.instance_norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.instance_norm方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def forward(self, input, ConInfor):
self._check_input_dim(input)
b, c = input.size(0), input.size(1)
if self.num_con >0:
tarBias = self.ConBias(ConInfor).view(b,c,1,1)
else:
tarBias = 0
out = F.instance_norm(
input, self.running_mean, self.running_var, None, None,
self.training or not self.track_running_stats, self.momentum, self.eps)
if self.affine:
bias = self.bias.repeat(b).view(b,c,1,1)
weight = self.weight.repeat(b).view(b,c,1,1)
return (out.view(b, c, *input.size()[2:])+tarBias)*weight + bias
else:
return out.view(b, c, *input.size()[2:])+tarBias
示例2: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def forward(self, x, y):
# Calculate class-conditional gains and biases
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1)
bias = self.bias(y).view(y.size(0), -1, 1, 1)
# If using my batchnorm
if self.mybn or self.cross_replica:
return self.bn(x, gain=gain, bias=bias)
# else:
else:
if self.norm_style == 'bn':
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
elif self.norm_style == 'in':
out = F.instance_norm(x, self.stored_mean, self.stored_var, None, None,
self.training, 0.1, self.eps)
elif self.norm_style == 'gn':
out = groupnorm(x, self.normstyle)
elif self.norm_style == 'nonorm':
out = x
return out * gain + bias
示例3: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def forward(self, input, ConInfor):
self._check_input_dim(input)
b, c = input.size(0), input.size(1)
out = F.instance_norm(
input, self.running_mean, self.running_var, None, None,
self.training or not self.track_running_stats, self.momentum, self.eps)
if self.num_con >0:
weight = self.ConAlpha(ConInfor).view(b,c,1,1)
bias = self.ConBeta(ConInfor).view(b,c,1,1)
else:
weight = 1
bias = 0
return out.view(b, c, *input.size()[2:])*weight + bias
示例4: _instance_norm
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def _instance_norm(raw, input, running_mean=None, running_var=None, weight=None,
bias=None, use_input_stats=True, momentum=0.1, eps=1e-5):
# TODO: the batch size!=1 view operations
print("WARNING: The Instance Normalization transfers to Caffe using BatchNorm, so the batch size should be 1")
if running_var is not None or weight is not None:
# TODO: the affine=True or track_running_stats=True case
raise NotImplementedError("not implement the affine=True or track_running_stats=True case InstanceNorm")
x= torch.batch_norm(
input, weight, bias, running_mean, running_var,
use_input_stats, momentum, eps,torch.backends.cudnn.enabled)
bottom_blobs = [log.blobs(input)]
layer_name1 = log.add_layer(name='instance_norm')
top_blobs = log.add_blobs([x], name='instance_norm_blob')
layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm',
bottom=bottom_blobs, top=top_blobs)
if running_mean is None or running_var is None:
# not use global_stats, normalization is performed over the current mini-batch
layer1.batch_norm_param(use_global_stats=0,eps=eps)
running_mean=torch.zeros(input.size()[1])
running_var=torch.ones(input.size()[1])
else:
layer1.batch_norm_param(use_global_stats=1, eps=eps)
running_mean_clone = running_mean.clone()
running_var_clone = running_var.clone()
layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0]))
log.cnet.add_layer(layer1)
if weight is not None and bias is not None:
layer_name2 = log.add_layer(name='bn_scale')
layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale',
bottom=top_blobs, top=top_blobs)
layer2.param.scale_param.bias_term = True
layer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy())
log.cnet.add_layer(layer2)
return x
#upsample layer
示例5: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def forward(self, inputs):
'''
Forward pass, return log probabilities over correspondences.
inputs -- 4D data tensor (BxCxNx1)
B -> batch size (multiple image pairs)
C -> 5 values (2D coordinate + 2D coordinate + 1D side information)
N -> number of correspondences
1 -> dummy dimension
'''
batch_size = inputs.size(0)
data_size = inputs.size(2) # number of correspondences
x = inputs
x = F.relu(self.p_in(x))
for r in self.res_blocks:
res = x
x = F.relu(r[1](F.instance_norm(r[0](x))))
x = F.relu(r[3](F.instance_norm(r[2](x))))
x = x + res
log_probs = F.logsigmoid(self.p_out(x))
# normalization in log space such that probabilities sum to 1
log_probs = log_probs.view(batch_size, -1)
normalizer = torch.logsumexp(log_probs, dim=1)
normalizer = normalizer.unsqueeze(1).expand(-1, data_size)
log_probs = log_probs - normalizer
log_probs = log_probs.view(batch_size, 1, data_size, 1)
return log_probs
示例6: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def forward(self, input, ConInfor):
self._check_input_dim(input)
b, c = input.size(0), input.size(1)
tarBias = self.ConBias(ConInfor).view(b,c,1,1)
out = F.instance_norm(
input, self.running_mean, self.running_var, None, None,
self.training or not self.track_running_stats, self.momentum, self.eps)
if self.affine:
bias = self.bias.repeat(b).view(b,c,1,1)
weight = self.weight.repeat(b).view(b,c,1,1)
return (out.view(b, c, *input.size()[2:])+tarBias)*weight + bias
else:
return out.view(b, c, *input.size()[2:])+tarBias
示例7: _instance_norm
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def _instance_norm(raw, input, running_mean=None, running_var=None, weight=None,
bias=None, use_input_stats=True, momentum=0.1, eps=1e-5):
# TODO: the batch size!=1 view operations
print("WARNING: The Instance Normalization transfers to Caffe using BatchNorm, so the batch size should be 1")
if running_var is not None or weight is not None:
# TODO: the affine=True or track_running_stats=True case
raise NotImplementedError("not implement the affine=True or track_running_stats=True case InstanceNorm")
x = torch.batch_norm(
input, weight, bias, running_mean, running_var,
use_input_stats, momentum, eps, torch.backends.cudnn.enabled)
bottom_blobs = [log.blobs(input)]
layer_name1 = log.add_layer(name='instance_norm')
top_blobs = log.add_blobs([x], name='instance_norm_blob')
layer1 = caffe_net.Layer_param(name=layer_name1, type='BatchNorm',
bottom=bottom_blobs, top=top_blobs)
if running_mean is None or running_var is None:
# not use global_stats, normalization is performed over the current mini-batch
layer1.batch_norm_param(use_global_stats=0, eps=eps)
running_mean = torch.zeros(input.size()[1])
running_var = torch.ones(input.size()[1])
else:
layer1.batch_norm_param(use_global_stats=1, eps=eps)
running_mean_clone = running_mean.clone()
running_var_clone = running_var.clone()
layer1.add_data(running_mean_clone.cpu().numpy(), running_var_clone.cpu().numpy(), np.array([1.0]))
log.cnet.add_layer(layer1)
if weight is not None and bias is not None:
layer_name2 = log.add_layer(name='bn_scale')
layer2 = caffe_net.Layer_param(name=layer_name2, type='Scale',
bottom=top_blobs, top=top_blobs)
layer2.param.scale_param.bias_term = True
layer2.add_data(weight.cpu().data.numpy(), bias.cpu().data.numpy())
log.cnet.add_layer(layer2)
return x
# upsample layer
示例8: test_instance_norm
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def test_instance_norm(self):
inp = torch.randn(1, 3, 32, 32, device='cuda', dtype=self.dtype)
running_mean = torch.randn(3, device='cuda', dtype=self.dtype)
running_var = torch.randn(3, device='cuda', dtype=self.dtype)
output = F.instance_norm(inp, running_mean=running_mean, running_var=running_var, weight=None, bias=None, use_input_stats=True, momentum=0.1, eps=1e-05)
示例9: compute_vgg19_loss
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import instance_norm [as 别名]
def compute_vgg19_loss(self, vgg, img, target, vgg_type='vgg19'):
img_feature = self.vgg((img + 1) / 2)
target_feature = self.vgg((target + 1) / 2).detach()
if vgg_type == 'vgg19':
return F.l1_loss(img_feature, target_feature)
if vgg_type == 'vgg19_sp':
sp = SpatialNorm(affine=False)
return F.l1_loss(sp(img_feature)[0], sp(target_feature)[0])
elif vgg_type == 'vgg19_sp_mean':
m1, m2 = img_feature.mean(dim=1), target_feature.mean(dim=1)
return F.l1_loss(m1, m2)
elif vgg_type == 'vgg19_sp_mean_mix':
m1, m2 = img_feature.mean(dim=1), target_feature.mean(dim=1)
return 0.5 * F.l1_loss(img_feature, target_feature) + 0.5 * F.l1_loss(m1, m2)
elif vgg_type == 'vgg19_sp_meanstd':
m1, m2 = img_feature.mean(dim=1), target_feature.mean(dim=1)
std1, std2 = img_feature.std(dim=1), target_feature.std(dim=1)
return 0.5 * F.l1_loss(m1, m2) + 0.5 *F.l1_loss(std1, std2)
elif vgg_type == 'vgg19_sp_meanstd_mix':
m1, m2 = img_feature.mean(dim=1), target_feature.mean(dim=1)
std1, std2 = img_feature.std(dim=1), target_feature.std(dim=1)
return 0.5 * F.l1_loss(img_feature, target_feature) + 0.25 * F.l1_loss(m1, m2) + 0.25 * F.l1_loss(std1, std2)
elif vgg_type == 'vgg19_in':
return F.l1_loss(F.instance_norm(img_feature), F.instance_norm(target_feature))
elif vgg_type == 'vgg19_in_mean':
img_feature = img_feature.view(*img_feature.shape[:2], -1)
target_feature = target_feature.view(*target_feature.shape[:2], -1)
m1, m2 = img_feature.mean(dim=2), target_feature.mean(dim=2)
return F.l1_loss(m1, m2)
elif vgg_type == 'vgg19_in_meanstd':
img_feature = img_feature.view(*img_feature.shape[:2], -1)
target_feature = target_feature.view(*target_feature.shape[:2], -1)
m1, m2 = img_feature.mean(dim=2), target_feature.mean(dim=2)
std1, std2 = img_feature.std(dim=2), target_feature.std(dim=2)
return F.l1_loss(m1, m2) + F.l1_loss(std1, std2)
else:
raise ValueError('vgg_type = {}'.format(vgg_type))