本文整理汇总了Python中torch.nn.functional.embedding方法的典型用法代码示例。如果您正苦于以下问题:Python functional.embedding方法的具体用法?Python functional.embedding怎么用?Python functional.embedding使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.embedding方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def forward(self, g, lg, x, y, deg_g, deg_lg, pm_pd):
pmpd_x = F.embedding(pm_pd, x)
sum_x = sum(theta(z) for theta, z in zip(self.theta_list, self.aggregate(g, x)))
g.set_e_repr({'y' : y})
g.update_all(fn.copy_edge(edge='y', out='m'), fn.sum('m', 'pmpd_y'))
pmpd_y = g.pop_n_repr('pmpd_y')
x = self.theta_x(x) + self.theta_deg(deg_g * x) + sum_x + self.theta_y(pmpd_y)
n = self.out_feats // 2
x = th.cat([x[:, :n], F.relu(x[:, n:])], 1)
x = self.bn_x(x)
sum_y = sum(gamma(z) for gamma, z in zip(self.gamma_list, self.aggregate(lg, y)))
y = self.gamma_y(y) + self.gamma_deg(deg_lg * y) + sum_y + self.gamma_x(pmpd_x)
y = th.cat([y[:, :n], F.relu(y[:, n:])], 1)
y = self.bn_y(y)
return x, y
示例2: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def forward(self, x, encoding, source_masks=None, decoder_masks=None,
input_embeddings=False, positions=None, feedback=None):
# x : decoder_inputs
if self.out_norm:
out_weight = self.out.weight / (1e-6 + torch.sqrt((self.out.weight ** 2).sum(0, keepdim=True)))
else:
out_weight = self.out.weight
if not input_embeddings: # NOTE only for Transformer
if x.ndimension() == 2:
x = F.embedding(x, out_weight * math.sqrt(self.d_model))
elif x.ndimension() == 3: # softmax relaxiation
x = x @ out_weight * math.sqrt(self.d_model) # batch x len x embed_size
x += positional_encodings_like(x)
x = self.dropout(x)
if self.enc_last:
for l, layer in enumerate(self.layers):
x = layer(x, encoding[-1], mask_src=source_masks, mask_trg=decoder_masks, feedback=feedback)
else:
for l, (layer, enc) in enumerate(zip(self.layers, encoding[1:])):
x = layer(x, enc, mask_src=source_masks, mask_trg=decoder_masks, feedback=feedback)
return x
示例3: _read_embeddings_from_hdf5
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def _read_embeddings_from_hdf5(
embeddings_filename: str, embedding_dim: int, vocab: Vocabulary, namespace: str = "tokens"
) -> torch.FloatTensor:
"""
Reads from a hdf5 formatted file. The embedding matrix is assumed to
be keyed by 'embedding' and of size `(num_tokens, embedding_dim)`.
"""
with h5py.File(embeddings_filename, "r") as fin:
embeddings = fin["embedding"][...]
if list(embeddings.shape) != [vocab.get_vocab_size(namespace), embedding_dim]:
raise ConfigurationError(
"Read shape {0} embeddings from the file, but expected {1}".format(
list(embeddings.shape), [vocab.get_vocab_size(namespace), embedding_dim]
)
)
return torch.FloatTensor(embeddings)
示例4: _get_num_tokens_from_first_line
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def _get_num_tokens_from_first_line(line: str) -> Optional[int]:
""" This function takes in input a string and if it contains 1 or 2 integers, it assumes the
largest one it the number of tokens. Returns None if the line doesn't match that pattern. """
fields = line.split(" ")
if 1 <= len(fields) <= 2:
try:
int_fields = [int(x) for x in fields]
except ValueError:
return None
else:
num_tokens = max(int_fields)
logger.info(
"Recognized a header line in the embedding file with number of tokens: %d",
num_tokens,
)
return num_tokens
return None
示例5: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def forward(self, unique_word_chars, unique_word_lengths, sequences_as_uniqs=None):
long_tensor = torch.cuda.LongTensor if torch.cuda.device_count() > 0 else torch.LongTensor
embedded_chars = self._embeddings(unique_word_chars.type(long_tensor))
# [N, S, L]
conv_out = self._conv(embedded_chars.transpose(1, 2))
# [N, L]
conv_mask = misc.mask_for_lengths(unique_word_lengths)
conv_out = conv_out + conv_mask.unsqueeze(1)
embedded_words = conv_out.max(2)[0]
if sequences_as_uniqs is None:
return embedded_words
else:
if not isinstance(sequences_as_uniqs, list):
sequences_as_uniqs = [sequences_as_uniqs]
all_embedded = []
for word_idxs in sequences_as_uniqs:
all_embedded.append(functional.embedding(
word_idxs.type(long_tensor), embedded_words))
return all_embedded
示例6: embedded_dropout
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def embedded_dropout(embed, words, dropout=0.1, scale=None):
if dropout:
mask = embed.weight.data.new().resize_((embed.weight.size(0), 1))
mask = mask.bernoulli_(1 - dropout)
mask = mask.expand_as(embed.weight) / (1 - dropout)
masked_embed_weight = mask * embed.weight
else:
masked_embed_weight = embed.weight
if scale:
masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight
padding_idx = embed.padding_idx
if padding_idx is None:
padding_idx = -1
X = F.embedding(words, masked_embed_weight, padding_idx, embed.max_norm,
embed.norm_type, embed.scale_grad_by_freq, embed.sparse)
return X
示例7: beam_decode
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def beam_decode(self, src, src_lang_idx, tgt_lang_idx, logit_mask):
embed_dim = self.args.embed_dim
max_len = src.size(1) + 51
pos_embedding = ut.get_positional_encoding(embed_dim, max_len)
word_embedding = F.normalize(self.word_embedding, dim=-1) if self.args.fix_norm else self.word_embedding
logit_mask = logit_mask == 1 if self.logit_mask is None else self.logit_mask
tgt_lang_embed = self.lang_embedding[tgt_lang_idx]
encoder_inputs = self.get_input(src, src_lang_idx, word_embedding, pos_embedding)
encoder_mask = (src == ac.PAD_ID).unsqueeze(1).unsqueeze(2)
encoder_outputs = self.encoder(encoder_inputs, encoder_mask)
def get_tgt_inp(tgt, time_step):
word_embed = F.embedding(tgt.type(src.type()), word_embedding) * self.scale
pos_embed = pos_embedding[time_step, :].reshape(1, 1, -1)
return word_embed + tgt_lang_embed + pos_embed
def logprob_fn(decoder_output):
logits = self.logit_fn(decoder_output, word_embedding, logit_mask)
return F.log_softmax(logits, dim=-1)
# following Attention is all you need, we decode up to src_len + 50 tokens only
max_lengths = torch.sum(src != ac.PAD_ID, dim=-1).type(src.type()) + 50
return self.decoder.beam_decode(encoder_outputs, encoder_mask, get_tgt_inp, logprob_fn, ac.BOS_ID, ac.EOS_ID, max_lengths, beam_size=self.args.beam_size, alpha=self.args.beam_alpha)
示例8: show_segmentation
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def show_segmentation(img, gt, pred, mean, std, colormap):
colormap = colormap.to(img.device)
gt = F.embedding(gt, colormap).permute(2, 0, 1).div(255)
pred = F.embedding(pred, colormap).permute(2, 0, 1).div(255)
mean = torch.as_tensor(mean, dtype=torch.float32, device=img.device)
std = torch.as_tensor(std, dtype=torch.float32, device=img.device)
img = img * std[:, None, None] + mean[:, None, None]
grid = torch.stack([img, gt, pred], 0)
grid = make_grid(grid, nrow=3)
grid = (
grid.mul_(255)
.add_(0.5)
.clamp_(0, 255)
.permute(1, 2, 0)
.to('cpu', torch.uint8)
.numpy()
)
img = Image.fromarray(grid)
return img
示例9: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def forward(self, data, weights=None):
'''
@param data dictionary
@key text: batch_size * max_text_len
@key text_len: batch_size
@key idf: vocab_size
@param weights placeholder used for maml
@return output: batch_size * embedding_dim
'''
ebd = self.ebd(data, weights)
if self.args.embedding == 'idf':
score = F.embedding(data['text'], data['idf'])
elif self.args.embedding == 'iwf':
score = F.embedding(data['text'], data['iwf'])
ebd = torch.sum(ebd * score, dim=1)
ebd = ebd / data['text_len'].unsqueeze(-1).float()
return ebd
示例10: precompute_stats
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def precompute_stats(train_data, val_data, test_data, args):
'''
Compute idf and iwf over the training data
'''
if args.embedding in ['idf', 'meta', 'meta_mlp']:
idf = _compute_idf(train_data)
train_data['idf'] = idf
val_data['idf'] = idf
test_data['idf'] = idf
if args.embedding in ['iwf', 'meta', 'meta_mlp']:
iwf = _compute_iwf(train_data)
train_data['iwf'] = iwf
val_data['iwf'] = iwf
test_data['iwf'] = iwf
示例11: embedded_dropout
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def embedded_dropout(embed, words, dropout=0.1, scale=None):
if dropout:
mask = embed.weight.data.new().resize_((embed.weight.size(0), 1)).bernoulli_(1 - dropout).expand_as(embed.weight) / (1 - dropout)
mask = Variable(mask)
masked_embed_weight = mask * embed.weight
else:
masked_embed_weight = embed.weight
if scale:
masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight
padding_idx = embed.padding_idx
if padding_idx is None:
padding_idx = -1
X = F.embedding(words, masked_embed_weight,
padding_idx, embed.max_norm, embed.norm_type,
embed.scale_grad_by_freq, embed.sparse
)
return X
示例12: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def forward(self, inputs): # pylint: disable=arguments-differ
original_inputs = inputs
if original_inputs.dim() > 2:
inputs = inputs.view(-1, inputs.size(-1))
embedded = embedding(inputs, self.weight,
max_norm=self.max_norm,
norm_type=self.norm_type,
scale_grad_by_freq=self.scale_grad_by_freq,
sparse=self.sparse)
if original_inputs.dim() > 2:
view_args = list(original_inputs.size()) + [embedded.size(-1)]
embedded = embedded.view(*view_args)
if self._projection:
projection = self._projection
for _ in range(embedded.dim() - 2):
projection = TimeDistributed(projection)
embedded = projection(embedded)
return embedded
# Custom logic requires custom from_params.
示例13: _read_embeddings_from_hdf5
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def _read_embeddings_from_hdf5(embeddings_filename ,
embedding_dim ,
vocab ,
namespace = u"tokens") :
u"""
Reads from a hdf5 formatted file. The embedding matrix is assumed to
be keyed by 'embedding' and of size ``(num_tokens, embedding_dim)``.
"""
with h5py.File(embeddings_filename, u'r') as fin:
embeddings = fin[u'embedding'][...]
if list(embeddings.shape) != [vocab.get_vocab_size(namespace), embedding_dim]:
raise ConfigurationError(
u"Read shape {0} embeddings from the file, but expected {1}".format(
list(embeddings.shape), [vocab.get_vocab_size(namespace), embedding_dim]))
return torch.FloatTensor(embeddings)
示例14: _read_embeddings_from_hdf5
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def _read_embeddings_from_hdf5(embeddings_filename: str,
embedding_dim: int,
vocab: Vocabulary,
namespace: str = "tokens",
amr: bool = False) -> torch.FloatTensor:
"""
Reads from a hdf5 formatted file. The embedding matrix is assumed to
be keyed by 'embedding' and of size ``(num_tokens, embedding_dim)``.
"""
with h5py.File(embeddings_filename, 'r') as fin:
embeddings = fin['embedding'][...]
if list(embeddings.shape) != [vocab.get_vocab_size(namespace), embedding_dim]:
raise ConfigurationError(
"Read shape {0} embeddings from the file, but expected {1}".format(
list(embeddings.shape), [vocab.get_vocab_size(namespace), embedding_dim]))
return torch.FloatTensor(embeddings)
示例15: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import embedding [as 别名]
def forward(self, inputs): # pylint:disable=arguments-differ
"""Embeds `inputs` with the dropped out embedding weight matrix."""
if self.training:
dropout = self.dropout
else:
dropout = 0
if dropout:
mask = self.weight.data.new(self.weight.size(0), 1)
mask.bernoulli_(1 - dropout)
mask = mask.expand_as(self.weight)
mask = mask / (1 - dropout)
masked_weight = self.weight * Variable(mask)
else:
masked_weight = self.weight
if self.scale and self.scale != 1:
masked_weight = masked_weight * self.scale
return F.embedding(inputs,
masked_weight,
max_norm=self.max_norm,
norm_type=self.norm_type,
scale_grad_by_freq=self.scale_grad_by_freq,
sparse=self.sparse)