当前位置: 首页>>代码示例>>Python>>正文


Python functional.dropout2d方法代码示例

本文整理汇总了Python中torch.nn.functional.dropout2d方法的典型用法代码示例。如果您正苦于以下问题:Python functional.dropout2d方法的具体用法?Python functional.dropout2d怎么用?Python functional.dropout2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.dropout2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        encoder2, encoder3, encoder4, encoder5 = self.encoders(x)
        encoder5 = F.dropout2d(encoder5, p=self.dropout_2d)

        center = self.center(encoder5)

        dec5 = self.dec5(center, encoder5)
        dec4 = self.dec4(dec5, encoder4)
        dec3 = self.dec3(dec4, encoder3)
        dec2 = self.dec2(dec3, encoder2)
        dec1 = self.dec1(dec2)

        if self.use_hypercolumn:
            dec1 = torch.cat([dec1,
                              F.upsample(dec2, scale_factor=2, mode='bilinear'),
                              F.upsample(dec3, scale_factor=4, mode='bilinear'),
                              F.upsample(dec4, scale_factor=8, mode='bilinear'),
                              F.upsample(dec5, scale_factor=16, mode='bilinear'),
                              ], 1)

        return self.final(dec1) 
开发者ID:neptune-ai,项目名称:open-solution-salt-identification,代码行数:23,代码来源:deprecated.py

示例2: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x, d=None):
        encoder2, encoder3, encoder4, encoder5 = self.encoders(x)
        encoder5 = F.dropout2d(encoder5, p=self.dropout_2d)

        center = self.center(encoder5)

        dec5 = self.dec5(center, encoder5)
        dec4 = self.dec4(dec5, encoder4)
        dec3 = self.dec3(dec4, encoder3)
        dec2 = self.dec2(dec3, encoder2)
        dec1 = self.dec1(dec2)

        if self.use_hypercolumn:
            dec1 = torch.cat([dec1,
                              F.upsample(dec2, scale_factor=2, mode='bilinear'),
                              F.upsample(dec3, scale_factor=4, mode='bilinear'),
                              F.upsample(dec4, scale_factor=8, mode='bilinear'),
                              F.upsample(dec5, scale_factor=16, mode='bilinear'),
                              ], 1)

        depth_channel_excitation = self.depth_channel_excitation(dec1, d)
        return self.final(depth_channel_excitation) 
开发者ID:neptune-ai,项目名称:open-solution-salt-identification,代码行数:24,代码来源:models_with_depth.py

示例3: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        encoder2, encoder3, encoder4, encoder5 = self.encoders(x)
        encoder5 = F.dropout2d(encoder5, p=self.dropout_2d)

        psp = self.psp(encoder5)

        up4 = self.up4(psp)
        up3 = self.up3(up4)
        up2 = self.up2(up3)
        up1 = self.up1(up2)
        if self.use_hypercolumn:
            hypercolumn = torch.cat([up1,
                                     F.upsample(up2, scale_factor=2, mode='bilinear'),
                                     F.upsample(up3, scale_factor=4, mode='bilinear'),
                                     F.upsample(up4, scale_factor=8, mode='bilinear'),
                                     ], 1)
            drop = F.dropout2d(hypercolumn, p=self.dropout_2d)
        else:
            drop = F.dropout2d(up4, p=self.dropout_2d)
        return self.final(drop) 
开发者ID:neptune-ai,项目名称:open-solution-salt-identification,代码行数:22,代码来源:pspnet.py

示例4: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, X, mask=None, training=False):
        # Simple Pooling layers
        max_masked = self.replace_masked_values(X, mask.unsqueeze(2), -1e7)
        max_pool = torch.max(max_masked, 1)[0]
        min_masked = self.replace_masked_values(X, mask.unsqueeze(2), +1e7)
        min_pool = torch.min(min_masked, 1)[0]
        mean_pool = torch.sum(X, 1) / torch.sum((1-mask).float(), 1, keepdim=True)

        # Self-attentive pooling layer
        # Run through linear projection. Shape: (batch_size, sequence length, 1)
        # Then remove the last dimension to get the proper attention shape (batch_size, sequence length).
        # X = X.permute(0, 2, 1)   # convert to [batch, channels, time]
        # X = F.dropout2d(X, 0.5, training=training)
        # X = X.permute(0, 2, 1)   # back to [batch, time, channels]
        self_attentive_logits = self._self_attentive_pooling_projection(X).squeeze(2)
        self_weights = self.masked_softmax(self_attentive_logits, 1-mask)
        self_attentive_pool = self.weighted_sum(X, self_weights)

        pooled_representations = torch.cat([max_pool, min_pool, self_attentive_pool], 1)
        pooled_representations_dropped = self._integrator_dropout(self_attentive_pool)

        outputs = self._output_layer(pooled_representations_dropped)

        return outputs, self_weights 
开发者ID:sattree,项目名称:gap,代码行数:26,代码来源:evidence_pooling.py

示例5: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        task = config_task.task
        y = self.conv(x)
        if self.second == 0:
            if config_task.isdropout1:
                x = F.dropout2d(x, p=0.5, training = self.training)
        else:
            if config_task.isdropout2:
                x = F.dropout2d(x, p=0.5, training = self.training)
        if config_task.mode == 'parallel_adapters' and self.is_proj:
            y = y + self.parallel_conv[task](x)
        y = self.bns[task](y)

        return y

# No projection: identity shortcut 
开发者ID:srebuffi,项目名称:residual_adapters,代码行数:18,代码来源:models.py

示例6: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x, gts=None):
        feats = self.feature_extractor(x)
        x_in = self.stage_0(feats[-1])

        # up conv
        n_feats = self.feature_extractor.n_feats[1:]
        for i in range(1, len(n_feats)):
            x_depth_out = getattr(self, 'upconv_{}'.format(i))(x_in)
            x_project = getattr(self, 'proj_{}'.format(i))(feats[-1-i])
            x_in = torch.cat((x_depth_out, x_project), 1)

        # cls features
        x_cls_in = x_in
        # x_cls_in = F.dropout2d(x_cls_in, training=self.training, inplace=True)
        cls_feat = self.cls_conv(x_cls_in)

        return cls_feat 
开发者ID:longcw,项目名称:MOTDT,代码行数:19,代码来源:rfcn_cls.py

示例7: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        encoder2, encoder3, encoder4, encoder5 = self.encoder(x)
        encoder5 = F.dropout2d(encoder5, p=self.dropout_2d)

        gcn2 = self.enc_br2(self.gcn2(encoder2))
        gcn3 = self.enc_br3(self.gcn3(encoder3))
        gcn4 = self.enc_br4(self.gcn4(encoder4))
        gcn5 = self.enc_br5(self.gcn5(encoder5))

        decoder5 = self.deconv5(gcn5)
        decoder4 = self.deconv4(self.dec_br4(decoder5 + gcn4))
        decoder3 = self.deconv3(self.dec_br3(decoder4 + gcn3))
        decoder2 = self.dec_br1(self.deconv2(self.dec_br2(decoder3 + gcn2)))

        if self.pool0:
            decoder2 = self.dec_br0_2(self.deconv1(self.dec_br0_1(decoder2)))

        return self.final(decoder2) 
开发者ID:minerva-ml,项目名称:open-solution-ship-detection,代码行数:20,代码来源:large_kernel_matters.py

示例8: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        encoder2, encoder3, encoder4, encoder5 = self.encoder(x)
        encoder5 = F.dropout2d(encoder5, p=self.dropout_2d)

        center = self.center(encoder5)

        dec5 = self.dec5(center, encoder5)
        dec4 = self.dec4(dec5, encoder4)
        dec3 = self.dec3(dec4, encoder3)
        dec2 = self.dec2(dec3, encoder2)
        dec1 = self.dec1(dec2)

        if self.use_hypercolumn:
            dec1 = torch.cat([dec1,
                              F.upsample(dec2, scale_factor=2, mode='bilinear'),
                              F.upsample(dec3, scale_factor=4, mode='bilinear'),
                              F.upsample(dec4, scale_factor=8, mode='bilinear'),
                              F.upsample(dec5, scale_factor=16, mode='bilinear'),
                              ], 1)

        if self.pool0:
            dec1 = self.dec0(dec1)

        return self.final(dec1) 
开发者ID:minerva-ml,项目名称:open-solution-ship-detection,代码行数:26,代码来源:unet.py

示例9: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        encoder2, encoder3, encoder4, encoder5 = self.encoder(x)
        encoder5 = F.dropout2d(encoder5, p=self.dropout_2d)

        psp = self.psp(encoder5)
        up4 = self.up4(psp)
        up3 = self.up3(up4)
        up2 = self.up2(up3)
        up1 = self.up1(up2)
        if self.use_hypercolumn:
            hypercolumn = torch.cat([up1,
                                     F.upsample(up2, scale_factor=2, mode='bilinear'),
                                     F.upsample(up3, scale_factor=4, mode='bilinear'),
                                     F.upsample(up4, scale_factor=8, mode='bilinear'),
                                     ], 1)
            drop = F.dropout2d(hypercolumn, p=self.dropout_2d)
        else:
            drop = F.dropout2d(up1, p=self.dropout_2d)

        if self.pool0:
            drop = self.up0(drop)
        return self.final(drop) 
开发者ID:minerva-ml,项目名称:open-solution-ship-detection,代码行数:24,代码来源:pspnet.py

示例10: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        conv1 = self.conv1(x)
        conv2 = self.conv2(self.pool(conv1))
        conv3 = self.conv3(self.pool(conv2))
        conv4 = self.conv4(self.pool(conv3))
        conv5 = self.conv5(self.pool(conv4))

        center = self.center(self.pool(conv5))

        dec5 = self.dec5(torch.cat([center, conv5], 1))

        dec4 = self.dec4(torch.cat([dec5, conv4], 1))
        dec3 = self.dec3(torch.cat([dec4, conv3], 1))
        dec2 = self.dec2(torch.cat([dec3, conv2], 1))
        dec1 = self.dec1(torch.cat([dec2, conv1], 1))

        return self.final(F.dropout2d(dec1, p=self.dropout_2d)) 
开发者ID:minerva-ml,项目名称:open-solution-data-science-bowl-2018,代码行数:19,代码来源:unet_models.py

示例11: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, inputs_mean, inputs_variance):
        if self.training:
            binary_mask = torch.ones_like(inputs_mean)
            binary_mask = F.dropout2d(binary_mask, self.p, self.training, self.inplace)
            
            outputs_mean = inputs_mean*binary_mask
            outputs_variance = inputs_variance*binary_mask**2
            
            if self._keep_variance_fn is not None:
                outputs_variance = self._keep_variance_fn(outputs_variance)
            return outputs_mean, outputs_variance
        
        outputs_variance = inputs_variance
        if self._keep_variance_fn is not None:
            outputs_variance = self._keep_variance_fn(outputs_variance)
        return inputs_mean, outputs_variance 
开发者ID:mattiasegu,项目名称:uncertainty_estimation_deep_learning,代码行数:18,代码来源:adf.py

示例12: init

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def init(self, tgt_sents, tgt_masks, src_enc, src_masks, init_scale=1.0, init_mu=True, init_var=True):
        with torch.no_grad():
            x = self.embed_scale * self.tgt_embed(tgt_sents)
            x = F.dropout2d(x, p=self.dropword, training=self.training)
            x += self.pos_enc(tgt_sents)
            x = F.dropout(x, p=0.2, training=self.training)

            mask = tgt_masks.eq(0)
            key_mask = src_masks.eq(0)
            for layer in self.layers:
                x = layer.init(x, mask, src_enc, key_mask, init_scale=init_scale)

            x = x * tgt_masks.unsqueeze(2)
            mu = self.mu.init(x, init_scale=0.05 * init_scale) if init_mu else self.mu(x)
            logvar = self.logvar.init(x, init_scale=0.05 * init_scale) if init_var else self.logvar(x)
            mu = mu * tgt_masks.unsqueeze(2)
            logvar = logvar * tgt_masks.unsqueeze(2)
            return mu, logvar 
开发者ID:XuezheMax,项目名称:flowseq,代码行数:20,代码来源:transformer.py

示例13: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, input, att, word):
        ## FC q
        word_W = F.dropout(word, self.dropout, training = self.training)
        weight = F.tanh(self.fcq_w(word_W)).view(-1,self.num_features,1,1)
        ## FC v
        v = F.dropout2d(input, self.dropout, training = self.training)
        v = v * F.relu(1-att).unsqueeze(1).expand_as(input)
        v = F.tanh(self.conv1(v))
        ## attMap
        inputAttShift = F.tanh(self.fcShift1(torch.cat((att.view(-1,self.num_outputs*14*14),word),1)))
        inputAttShift = F.tanh(self.fcShift2(inputAttShift)).view(-1,self.num_features,1,1)
        ## v * q_tile
        v = v * weight.expand_as(v) * inputAttShift.expand_as(v) # v = self.cbn1(F.tanh(v),word) #apply non-linear before cbn equal to MLB
        # no tanh shoulb be here
        v = self.conv2(v)
        # Normalize to single area
        return F.softmax(v.view(-1,14*14), dim=1).view(-1,self.num_outputs,14,14) 
开发者ID:bezorro,项目名称:ACMN-Pytorch,代码行数:19,代码来源:ResAttUnit.py

示例14: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x, time = 0, **kargs):
        if self.training:
            with torch.no_grad():
                p = self.p.getVal(time = time)
                mask = (F.dropout2d if self.use_2d else F.dropout)(h.ones(x.size()),p=p, training=True) 
            if self.alpha_dropout:
                with torch.no_grad():
                    keep_prob = 1 - p
                    alpha = -1.7580993408473766
                    a = math.pow(keep_prob + alpha * alpha * keep_prob * (1 - keep_prob), -0.5)
                    b = -a * alpha * (1 - keep_prob)
                    mask = mask * a
                return x * mask + b
            else:
                return x * mask
        else:
            return x 
开发者ID:eth-sri,项目名称:diffai,代码行数:19,代码来源:components.py

示例15: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import dropout2d [as 别名]
def forward(self, x):
        res = x

        # step 1. Expansion phase/Point-wise convolution
        if self.expand_ratio != 1:
            x = self.expansion(x)

        # step 2. Depth-wise convolution phase
        x = self.depth_wise(x)

        # step 3. Squeeze and Excitation
        if self.use_se:
            x = self.se_block(x)

        # step 4. Point-wise convolution phase
        x = self.point_wise(x)

        # step 5. Skip connection and drop connect
        if self.use_residual:
            if self.training and (self.dropout_rate is not None):
                x = F.dropout2d(input=x, p=self.dropout_rate,
                                training=self.training, inplace=True)
            x = x + res

        return x 
开发者ID:ansleliu,项目名称:LightNetPlusPlus,代码行数:27,代码来源:efficient.py


注:本文中的torch.nn.functional.dropout2d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。