本文整理汇总了Python中torch.nn.functional.conv1d方法的典型用法代码示例。如果您正苦于以下问题:Python functional.conv1d方法的具体用法?Python functional.conv1d怎么用?Python functional.conv1d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.nn.functional
的用法示例。
在下文中一共展示了functional.conv1d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def forward(self, input):
'''
input size: B x C x T
output size: B x C x T
'''
B, C, T = input.size()
H = self.num_heads
weight = self.weight
if self.weight_softmax:
weight = F.softmax(weight, dim=-1)
weight = F.dropout(weight, self.weight_dropout, training=self.training)
# Merge every C/H entries into the batch dimension (C = self.input_size)
# B x C x T -> (B * C/H) x H x T
# One can also expand the weight to C x 1 x K by a factor of C/H
# and do not reshape the input instead, which is slow though
input = input.view(-1, H, T)
output = F.conv1d(input, weight, padding=self.padding, groups=self.num_heads)
output = output.view(B, C, T)
if self.bias is not None:
output = output + self.bias.view(1, -1, 1)
return output
示例2: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, 'W_inverse'):
# Reverse computation
W_inverse = W.inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == 'torch.cuda.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W
示例3: __init__
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def __init__(self, spatial_dims: int, sigma, truncated: float = 4.0):
"""
Args:
spatial_dims: number of spatial dimensions of the input image.
must have shape (Batch, channels, H[, W, ...]).
sigma (float or sequence of floats): std.
truncated: spreads how many stds.
"""
super().__init__()
self.spatial_dims = int(spatial_dims)
_sigma = ensure_tuple_rep(sigma, self.spatial_dims)
self.kernel = [
torch.nn.Parameter(torch.as_tensor(gaussian_1d(s, truncated), dtype=torch.float), False) for s in _sigma
]
self.padding = [same_padding(k.size()[0]) for k in self.kernel]
self.conv_n = [F.conv1d, F.conv2d, F.conv3d][spatial_dims - 1]
for idx, param in enumerate(self.kernel):
self.register_parameter(f"kernel_{idx}", param)
示例4: net
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def net(self, x, block_num, params=None):
layer_name = "ll_tc.ll_temporal_block" + str(block_num)
if params is None:
x = self.ll_conv1(x)
else:
x = F.conv1d(
x,
weight=params[layer_name + ".ll_conv1.weight"],
bias=params[layer_name + ".ll_conv1.bias"],
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
)
x = self.chomp1(x)
x = F.leaky_relu(x)
return x
示例5: calcEdgeFlux
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def calcEdgeFlux(self, flux):
flux_edge1 = F.conv1d(F.pad(flux, (2,1), mode='circular'), self.weight_flux1,
stride=1, padding=0, bias=None)
flux_edge2 = F.conv1d(F.pad(flux, (1,2), mode='circular'), self.weight_flux2,
stride=1, padding=0, bias=None)
beta1 = torch.pow(F.conv1d(F.pad(flux, (2,1), mode='circular'), self.weight_beta1,
stride=1, padding=0, bias=None), 2)
beta2 = torch.pow(F.conv1d(F.pad(flux, (1,2), mode='circular'), self.weight_beta2,
stride=1, padding=0, bias=None), 2)
eps = 1e-6
w1 = 1./(3*(eps + beta1)**2)
w2 = 2./(3*(eps + beta2)**2)
w = torch.stack([w1, w2], dim = 0)
w = w / torch.sum(w, dim=0)
edge_flux = w[0]*flux_edge1 + w[1]*flux_edge2
return edge_flux
示例6: __call__
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def __call__(self, u):
"""
Args:
u (torch.Tensor): [B, C, H]
Returns:
grad_u: [B, C, H]
"""
if(self.kernel_size == 2):
return self.conditionalUpwind(u)
u_shape = u.shape
u = u.view(-1, 1, *u_shape[-1:])
u = F.conv1d(F.pad(u, self.padding, mode='circular'),
self.weight, stride=1, padding=0, bias=None) / (self.dx)
return u.view(u_shape)
示例7: conditionalUpwind
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def conditionalUpwind(self, u):
"""
Upwind scheme:
https://en.wikipedia.org/wiki/Upwind_scheme
Args:
u (torch.Tensor): [B, C, H]
Returns:
grad_u: [B, C, H]
"""
u_shape = u.shape
u = u.view(-1, 1, *u_shape[-1:])
u1 = F.conv1d(F.pad(u, self.padding, mode='circular'),
self.weight, stride=1, padding=0, bias=None) / (self.dx)
u2 = F.conv1d(F.pad(u, self.padding, mode='circular'),
-torch.flip(self.weight, dims=[-1]), stride=1, padding=0, bias=None) / (self.dx)
u = torch.where(u > 0, u1, u2)
return u2.view(u_shape)
示例8: quaternion_conv
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def quaternion_conv(input, r_weight, i_weight, j_weight, k_weight, bias, stride,
padding, groups, dilatation):
"""
Applies a quaternion convolution to the incoming data:
"""
cat_kernels_4_r = torch.cat([r_weight, -i_weight, -j_weight, -k_weight], dim=1)
cat_kernels_4_i = torch.cat([i_weight, r_weight, -k_weight, j_weight], dim=1)
cat_kernels_4_j = torch.cat([j_weight, k_weight, r_weight, -i_weight], dim=1)
cat_kernels_4_k = torch.cat([k_weight, -j_weight, i_weight, r_weight], dim=1)
cat_kernels_4_quaternion = torch.cat([cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], dim=0)
if input.dim() == 3:
convfunc = F.conv1d
elif input.dim() == 4:
convfunc = F.conv2d
elif input.dim() == 5:
convfunc = F.conv3d
else:
raise Exception("The convolutional input is either 3, 4 or 5 dimensions."
" input.dim = " + str(input.dim()))
return convfunc(input, cat_kernels_4_quaternion, bias, stride, padding, dilatation, groups)
示例9: update_params
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def update_params(self, VdivWZH, update_W, update_H, update_Z, W_alpha, H_alpha, Z_alpha):
# type: (Tensor, bool, bool, bool, float, float, float) -> None
if update_W or update_Z:
new_W = F.conv1d(VdivWZH[:, None], self.H[:, None] * self.Z[:, None, None]) * self.W
if update_H:
new_H = F.conv1d(VdivWZH[None, ...], torch.transpose(self.W * self.Z[:, None], 0, 1))[0] * self.H
new_H = normalize(self.fix_neg(new_H + H_alpha - 1), 1)
self.H[:] = new_H
if update_W:
self.W[:] = normalize(self.fix_neg(new_W + W_alpha - 1), (0, 2))
if update_Z:
Z = normalize(self.fix_neg(new_W.sum((0, 2)) + Z_alpha - 1))
self.Z[:] = Z
示例10: bspline_kernel_1d
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def bspline_kernel_1d(sigma, order=2, asTensor=False, dtype=th.float32, device='cpu'):
kernel_ones = th.ones(1, 1, sigma)
kernel = kernel_ones
padding = sigma - 1
for i in range(1, order + 1):
kernel = F.conv1d(kernel, kernel_ones, padding=padding)/sigma
if asTensor:
return kernel[0, 0, ...].to(dtype=dtype, device=device)
else:
return kernel[0, 0, ...].numpy()
示例11: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def forward(self, input_data):
num_batches, _, num_samples = input_data.size()
self.num_samples = num_samples
forward_transform = F.conv1d(input_data,
self.forward_basis,
stride=self.hop_length,
padding=self.filter_length)
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
return magnitude, phase
示例12: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def forward(self, x):
"""
Implemented complex convolution using combining 'grouped convolution' and 'real / img weight'
:param x: data (N, C, T) C is concatenated with C/2 real channels and C/2 idea channels
:return: complex conved result
"""
# adopt reflect padding
if self.padding:
x = F.pad(x, (self.padding, self.padding), 'reflect')
# forward real
real_part = F.conv1d(x, self.A, None, stride=self.stride, padding=0,
dilation=self.dilation, groups=2)
# forward idea
spl = self.in_channels // 2
weight_B = torch.cat([self.B[:spl].data * (-1), self.B[spl:].data])
idea_part = F.conv1d(x, weight_B, None, stride=self.stride, padding=0,
dilation=self.dilation, groups=2)
return real_part + idea_part
示例13: moving_sum
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def moving_sum(x, back, forward):
"""Compute the moving sum of x over a chunk_size with the provided bounds.
Args:
x (FloatTensor): `[B, H_ma, H_ca, qlen, klen]`
back (int):
forward (int):
Returns:
x_sum (FloatTensor): `[B, H_ma, H_ca, qlen, klen]`
"""
bs, n_heads_mono, n_heads_chunk, qlen, klen = x.size()
x = x.view(-1, klen)
# Moving sum is computed as a carefully-padded 1D convolution with ones
x_padded = F.pad(x, pad=[back, forward]) # `[B * H_ma * H_ca * qlen, back + klen + forward]`
# Add a "channel" dimension
x_padded = x_padded.unsqueeze(1)
# Construct filters
filters = x.new_ones(1, 1, back + forward + 1)
x_sum = F.conv1d(x_padded, filters)
x_sum = x_sum.squeeze(1).view(bs, n_heads_mono, n_heads_chunk, qlen, -1)
return x_sum
示例14: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def forward(self, x):
if self.deterministic:
assert self.training == False, "Flag deterministic is True. This should not be used in training."
return F.conv1d(x, self.post_weight_mu, self.bias_mu, self.stride, self.padding, self.dilation, self.groups)
batch_size = x.size()[0]
# apply local reparametrisation trick see [1] Eq. (6)
# to the parametrisation given in [3] Eq. (6)
mu_activations = F.conv1d(x, self.weight_mu, self.bias_mu, self.stride,
self.padding, self.dilation, self.groups)
var_activations = F.conv1d(x.pow(2), self.weight_logvar.exp(), self.bias_logvar.exp(), self.stride,
self.padding, self.dilation, self.groups)
# compute z
# note that we reparametrise according to [2] Eq. (11) (not [1])
z = reparametrize(self.z_mu.repeat(batch_size, 1, 1), self.z_logvar.repeat(batch_size, 1, 1),
sampling=self.training, cuda=self.cuda)
z = z[:, :, None]
return reparametrize(mu_activations * z, (var_activations * z.pow(2)).log(), sampling=self.training,
cuda=self.cuda)
示例15: forward
# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import conv1d [as 别名]
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, 'W_inverse'):
# Reverse computation
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == 'torch.cuda.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W