当前位置: 首页>>代码示例>>Python>>正文


Python functional.avg_pool3d方法代码示例

本文整理汇总了Python中torch.nn.functional.avg_pool3d方法的典型用法代码示例。如果您正苦于以下问题:Python functional.avg_pool3d方法的具体用法?Python functional.avg_pool3d怎么用?Python functional.avg_pool3d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.avg_pool3d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, x):
        if debug: print '0', x.size(), 64
        out = F.relu(self.bn1(self.conv1(x)))
        if debug: print '1', out.size()
        out = self.layer1(out)
        if debug: print '2', out.size()
        out = self.layer2(out)
        if debug: print '3', out.size()
        out = self.layer3(out)
        if debug: print '4', out.size()
        out = self.layer4(out)
        if debug: print '5', out.size()
        out = F.avg_pool3d(out, 4)
        if debug: print '6', out.size()
        out_1 = out.view(out.size(0), -1)
        if debug: print '7', out_1.size()
        out = self.linear(out_1)
        if debug: print '8', out.size()
        return out, out_1 
开发者ID:uci-cbcl,项目名称:DeepLung,代码行数:21,代码来源:dpn3d.py

示例2: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, block):
        # seq1: [B, N, C, SL, W, H]
        (B, N, C, SL, H, W) = block.shape
        block = block.view(B*N, C, SL, H, W)
        feature = self.backbone(block)
        del block 
        feature = F.relu(feature)
        
        feature = F.avg_pool3d(feature, (self.last_duration, 1, 1), stride=1)
        feature = feature.view(B, N, self.param['feature_size'], self.last_size, self.last_size) # [B*N,D,last_size,last_size]
        context, _ = self.agg(feature)
        context = context[:,-1,:].unsqueeze(1)
        context = F.avg_pool3d(context, (1, self.last_size, self.last_size), stride=1).squeeze(-1).squeeze(-1)
        del feature

        context = self.final_bn(context.transpose(-1,-2)).transpose(-1,-2) # [B,N,C] -> [B,C,N] -> BN() -> [B,N,C], because BN operates on id=1 channel.
        output = self.final_fc(context).view(B, -1, self.num_class)

        return output, context 
开发者ID:TengdaHan,项目名称:DPC,代码行数:21,代码来源:model_3d_lc.py

示例3: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, x):
        b, c, d, h, w = x.shape
        xs = F.avg_pool3d(F.relu(self.conv1(x)), 2)
        xs = F.avg_pool3d(F.relu(self.conv2(xs)), 2)
        xs = F.avg_pool3d(F.relu(self.conv3(xs)), 2)
        xs = xs.view(xs.size(0), -1)
        self.regularisation_loss = 30.0 * torch.mean(torch.abs(xs))
        
        # cap the displacement field by max_disp
        xs = torch.tanh(self.fc(xs)) * self.max_disp
        xs = xs.view(-1, *self.cp_grid_shape)

        self.displacement_field = self.compute_displacement(xs) + self.gen_3d_mesh_grid(d, h, w).unsqueeze(0)
        
        # extract first channel for warping
        img = x.narrow(dim=1, start=0, length=1)

        # warp image
        return self.warp_image(img).to(self.device) 
开发者ID:biomedia-mira,项目名称:istn,代码行数:21,代码来源:stn.py

示例4: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, inputImg, sample_grid=None):
    
        B,C,D,H,W = inputImg.size()
        if(sample_grid is None):
            sample_grid = self.sample_grid1
        sample_grid = sample_grid.to(inputImg.device)    
        #pre-smooth image (has to be done in advance for original models )
        #x00 = F.avg_pool3d(inputImg,3,padding=1,stride=1)
        
        _,D_grid,H_grid,W_grid,_ = sample_grid.size()
        input = F.grid_sample(inputImg, (sample_grid.view(1,1,-1,1,3).repeat(B,1,1,1,1) + self.offset1[:,:,:,0:1,:])).view(B,-1,D_grid,H_grid,W_grid)-\
        F.grid_sample(inputImg, (sample_grid.view(1,1,-1,1,3).repeat(B,1,1,1,1) + self.offset1[:,:,:,1:2,:])).view(B,-1,D_grid,H_grid,W_grid)
        
        x1 = F.relu(self.BN1(self.LIN1(input)))
        x2 = self.BN2(self.LIN2(x1))
        
        x3a = torch.cat((x2,F.relu(self.LIN3a(x2))),dim=1)
        x3b = torch.cat((x3a,F.relu(self.LIN3b(self.BN3a(x3a)))),dim=1)
        x3c = torch.cat((x3b,F.relu(self.LIN3c(self.BN3b(x3b)))),dim=1)
        x3d = torch.cat((x3c,F.relu(self.LIN3d(self.BN3c(x3c)))),dim=1)

        x4 = self.LIN4(self.BN3d(x3d))
        #return half-resolution segmentation/prediction 
        return F.interpolate(x4, size=[self.half_res[0],self.half_res[1],self.half_res[2]], mode='trilinear',align_corners=False) 
开发者ID:mattiaspaul,项目名称:OBELISK,代码行数:26,代码来源:models.py

示例5: downsample_basic_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(
        out.size(0), planes - out.size(1), out.size(2), out.size(3),
        out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()

    out = Variable(torch.cat([out.data, zero_pads], dim=1))

    return out 
开发者ID:TengdaHan,项目名称:DPC,代码行数:13,代码来源:resnet_2d3d.py

示例6: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, x):

        y = F.avg_pool3d(x, kernel_size=x.size()[2:5])
        y = y.permute(0, 2, 3, 4, 1)
        y = self.nonlin1(self.linear1(y))
        y = self.nonlin2(self.linear2(y))
        y = y.permute(0, 4, 1, 2, 3)
        y = x * y
        return y 
开发者ID:ozan-oktay,项目名称:Attention-Gated-Networks,代码行数:11,代码来源:utils.py

示例7: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        last_duration = int(math.ceil(self.sample_duration / 16))
        last_size = int(math.floor(self.spatial_size / 32))
        out = F.avg_pool3d(
            out, kernel_size=(last_duration, last_size, last_size)).view(
                features.size(0), -1)
        out = self.classifier(out)
        return out

##########################################################################################
########################################################################################## 
开发者ID:tomrunia,项目名称:PyTorchConv3D,代码行数:15,代码来源:densenet.py

示例8: downsample_basic_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(
        out.size(0), planes - out.size(1), out.size(2), out.size(3),
        out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()
        zero_pads.cuda()
    out = torch.cat([out, zero_pads], dim=1)
    # out = Variable(torch.cat([out.data, zero_pads], dim=1))
    return out 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:13,代码来源:nonlocalnet.py

示例9: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        last_duration = int(math.ceil(self.sample_duration / 16))
        last_size = int(math.floor(self.sample_size / 32))
        out = F.avg_pool3d(
            out, kernel_size=(last_duration, last_size, last_size)).view(
                features.size(0), -1)
        out = self.classifier(out)
        return out 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:12,代码来源:densenet3D.py

示例10: downsample_basic_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(
        out.size(0), planes - out.size(1),
        out.size(2), out.size(3), out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()
    out = Variable(torch.cat([out.data, zero_pads], dim=1))
    return out 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:11,代码来源:wideresnet3D.py

示例11: downsample_basic_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(
        out.size(0), planes - out.size(1),
        out.size(2), out.size(3), out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()
    out = Variable(torch.cat([out.data, zero_pads], dim=1))

    return out 
开发者ID:alexandonian,项目名称:pretorched-x,代码行数:12,代码来源:resnet3D.py

示例12: _downsample_basic_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def _downsample_basic_block(self, x, planes, stride):
        out = F.avg_pool3d(x, kernel_size=1, stride=stride)
        zero_pads = torch.zeros(out.size(0), planes - out.size(1), out.size(2),
                                out.size(3), out.size(4))
        if isinstance(out.data, torch.cuda.FloatTensor):
            zero_pads = zero_pads.cuda()

        out = torch.cat([out.data, zero_pads], dim=1)

        return out 
开发者ID:kenshohara,项目名称:3D-ResNets-PyTorch,代码行数:12,代码来源:resnet2p1d.py

示例13: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, input_img):
        img_in = F.avg_pool3d(input_img,3,padding=1,stride=2)
        img_in = F.relu(self.batch0(self.layer0(img_in)))
        sampled = F.grid_sample(img_in,ogrid_xyz + self.offsets[0,:,:].view(1,-1,1,1,3)).view(1,-1,o_m,o_n,o_o)
        sampled -= F.grid_sample(img_in,ogrid_xyz + self.offsets[1,:,:].view(1,-1,1,1,3)).view(1,-1,o_m,o_n,o_o)
    
        x = F.relu(self.batch1(self.layer1(sampled)))
        x = F.relu(self.batch2(self.layer2(x)))
        features = self.layer3(x)
        return features 
开发者ID:multimodallearning,项目名称:pdd_net,代码行数:12,代码来源:dense_pdd_net_v01.py

示例14: downsample_basic_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(
        out.size(0), planes - out.size(1), out.size(2), out.size(3),
        out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()

    out = torch.cat([out.data, zero_pads], dim=1)

    return out 
开发者ID:daili0015,项目名称:ModelFeast,代码行数:13,代码来源:WideResnet_module.py

示例15: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool3d [as 别名]
def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        # last_duration = int(math.ceil(self.sample_duration / 16))
        # last_size = int(math.floor(self.sample_size / 32))
        # out = F.avg_pool3d(
        #     out, kernel_size=(last_duration, last_size, last_size)).view(
        #         features.size(0), -1)

        out = F.adaptive_avg_pool3d(out, (1, 1, 1)).view(features.size(0), -1)

        out = self.classifier(out)
        return out 
开发者ID:daili0015,项目名称:ModelFeast,代码行数:15,代码来源:Densenet_module.py


注:本文中的torch.nn.functional.avg_pool3d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。