当前位置: 首页>>代码示例>>Python>>正文


Python functional.avg_pool2d方法代码示例

本文整理汇总了Python中torch.nn.functional.avg_pool2d方法的典型用法代码示例。如果您正苦于以下问题:Python functional.avg_pool2d方法的具体用法?Python functional.avg_pool2d怎么用?Python functional.avg_pool2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.avg_pool2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return torch.cat(outputs, 1) 
开发者ID:jiangtaoxie,项目名称:fast-MPN-COV,代码行数:20,代码来源:inception.py

示例2: extract_feature

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def extract_feature(self, x, preReLU=False):
        out = self.conv1(x)
        feat1 = self.block1(out)
        feat2 = self.block2(feat1)
        feat3 = self.block3(feat2)
        out = self.relu(self.bn1(feat3))
        out = F.avg_pool2d(out, 8)
        out = out.view(-1, self.nChannels[3])
        out = self.fc(out)

        if preReLU:
            feat1 = self.block2.layer[0].bn1(feat1)
            feat2 = self.block3.layer[0].bn1(feat2)
            feat3 = self.bn1(feat3)

        return [feat1, feat2, feat3], out 
开发者ID:clovaai,项目名称:overhaul-distillation,代码行数:18,代码来源:WideResNet.py

示例3: _forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def _forward(self, level, inp):
        # Upper branch
        up1 = inp
        up1 = self._modules['b1_' + str(level)](up1)

        # Lower branch
        low1 = F.avg_pool2d(inp, 2, stride=2)
        low1 = self._modules['b2_' + str(level)](low1)

        if level > 1:
            low2 = self._forward(level - 1, low1)
        else:
            low2 = low1
            low2 = self._modules['b2_plus_' + str(level)](low2)

        low3 = low2
        low3 = self._modules['b3_' + str(level)](low3)

        up2 = F.upsample(low3, scale_factor=2, mode='nearest')

        return up1 + up2 
开发者ID:protossw512,项目名称:AdaptiveWingLoss,代码行数:23,代码来源:models.py

示例4: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, source_features):
        outputs = []
        if self.weight_type == 'const':
            for w in F.softplus(self.weights.mul(10)):
                outputs.append(w.view(1, 1))
        else:
            for i, (idx, _) in enumerate(self.pairs):
                f = source_features[idx]
                f = F.avg_pool2d(f, f.size(2)).view(-1, f.size(1))
                if self.weight_type == 'relu':
                    outputs.append(F.relu(self[i](f)))
                elif self.weight_type == 'relu-avg':
                    outputs.append(F.relu(self[i](f.div(f.size(1)))))
                elif self.weight_type == 'relu6':
                    outputs.append(F.relu6(self[i](f)))
        return outputs 
开发者ID:alinlab,项目名称:L2T-ww,代码行数:18,代码来源:train_l2t_ww.py

示例5: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        with torch.set_grad_enabled(self.finetune):
            x = self.model.conv1(x)
            x = self.model.bn1(x)
            x = self.model.relu(x)
            x = self.model.maxpool(x)

            x = self.model.layer1(x)
            x = self.model.layer2(x)
            x = self.model.layer3(x)
            x = self.model.layer4(x)

        if not self.spatial_context:
            x = F.avg_pool2d(x, kernel_size=7).view(x.size(0), x.size(1))
        if hasattr(self, 'context_transform'):
            x = self.context_transform(x)
        if hasattr(self, 'context_nonlinearity'):
            x = self.context_nonlinearity(x)
        return x 
开发者ID:nadavbh12,项目名称:Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch,代码行数:21,代码来源:vision_encoders.py

示例6: avg_pool2d

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def avg_pool2d(h_kernel_size, h_stride=1):

    def compile_fn(di, dh):
        (_, _, height, width) = di['in'].size()
        padding = nn.ZeroPad2d(
            calculate_same_padding(height, width, dh['stride'],
                                   dh['kernel_size']))
        avg_pool = nn.AvgPool2d(dh['kernel_size'], stride=dh['stride'])

        def fn(di):
            x = padding(di['in'])
            return {'out': avg_pool(x)}

        return fn, [padding, avg_pool]

    return siso_pytorch_module('AvgPool2D', compile_fn, {
        'kernel_size': h_kernel_size,
        'stride': h_stride
    }) 
开发者ID:negrinho,项目名称:deep_architect,代码行数:21,代码来源:pytorch_ops.py

示例7: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        """ROI head module for FPN

        Parameters
        ----------
        x : torch.Tensor
            A tensor of input features with shape N x C x H x W

        Returns
        -------
        cls_logits : torch.Tensor
            A tensor of classification logits with shape S x (num_thing + 1)
        bbx_logits : torch.Tensor
            A tensor of class-specific bounding box regression logits with shape S x num_thing x 4
        """
        x = functional.avg_pool2d(x, 2)

        # Run head
        x = self.fc(x.view(x.size(0), -1))
        return self.roi_cls(x), self.roi_bbx(x).view(x.size(0), -1, 4) 
开发者ID:mapillary,项目名称:seamseg,代码行数:22,代码来源:fpn.py

示例8: _forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def _forward(self, level, inp):
        # Upper branch
        up1 = inp
        up1 = self._modules['b1_' + str(level)](up1)

        # Lower branch
        low1 = F.avg_pool2d(inp, 2, stride=2)
        low1 = self._modules['b2_' + str(level)](low1)

        if level > 1:
            low2 = self._forward(level - 1, low1)
        else:
            low2 = low1
            low2 = self._modules['b2_plus_' + str(level)](low2)

        low3 = low2
        low3 = self._modules['b3_' + str(level)](low3)

        up2 = F.interpolate(low3, scale_factor=2, mode='nearest')

        return up1 + up2 
开发者ID:kwea123,项目名称:VTuber_Unity,代码行数:23,代码来源:models.py

示例9: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        # pre-context
        avg_x = F.adaptive_avg_pool2d(x, output_size=1)
        avg_x = self.pre_context(avg_x)
        avg_x = avg_x.expand_as(x)
        x = x + avg_x
        # switch
        avg_x = F.pad(x, pad=(2, 2, 2, 2), mode='reflect')
        avg_x = F.avg_pool2d(avg_x, kernel_size=5, stride=1, padding=0)
        switch = self.switch(avg_x)
        # sac
        weight = self._get_weight(self.weight)
        if self.use_deform:
            offset = self.offset_s(avg_x)
            out_s = deform_conv(x, offset, weight, self.stride, self.padding,
                                self.dilation, self.groups, 1)
        else:
            out_s = super().conv2d_forward(x, weight)
        ori_p = self.padding
        ori_d = self.dilation
        self.padding = tuple(3 * p for p in self.padding)
        self.dilation = tuple(3 * d for d in self.dilation)
        weight = weight + self.weight_diff
        if self.use_deform:
            offset = self.offset_l(avg_x)
            out_l = deform_conv(x, offset, weight, self.stride, self.padding,
                                self.dilation, self.groups, 1)
        else:
            out_l = super().conv2d_forward(x, weight)
        out = switch * out_s + (1 - switch) * out_l
        self.padding = ori_p
        self.dilation = ori_d
        # post-context
        avg_x = F.adaptive_avg_pool2d(out, output_size=1)
        avg_x = self.post_context(avg_x)
        avg_x = avg_x.expand_as(out)
        out = out + avg_x
        return out 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:40,代码来源:saconv.py

示例10: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        # out = self.layer4(out)
        out = F.avg_pool2d(out, 8)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:12,代码来源:resnext.py

示例11: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.layer5(out)
        out = F.avg_pool2d(out, 8)
        out = self.linear(out.view(out.size(0), -1))
        return out 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:12,代码来源:pnasnet.py

示例12: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:12,代码来源:dpn.py

示例13: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))

        # Squeeze
        w = F.avg_pool2d(out, out.size(2))
        w = F.relu(self.fc1(w))
        w = F.sigmoid(self.fc2(w))
        # Excitation
        out = out * w  # New broadcasting feature from v0.2!

        out += self.shortcut(x)
        out = F.relu(out)
        return out 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:16,代码来源:senet.py

示例14: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return (out,F.log_softmax(out)) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:12,代码来源:preact_resnet.py

示例15: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool2d [as 别名]
def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layers(out)
        out = F.avg_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return (out,F.log_softmax(out)) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:9,代码来源:mobilenet.py


注:本文中的torch.nn.functional.avg_pool2d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。