当前位置: 首页>>代码示例>>Python>>正文


Python functional.avg_pool1d方法代码示例

本文整理汇总了Python中torch.nn.functional.avg_pool1d方法的典型用法代码示例。如果您正苦于以下问题:Python functional.avg_pool1d方法的具体用法?Python functional.avg_pool1d怎么用?Python functional.avg_pool1d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.nn.functional的用法示例。


在下文中一共展示了functional.avg_pool1d方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_avg_pool1d

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def test_avg_pool1d(
        self, context, input_shape, kernel_size, stride, pad, include_pad, ceil_mode,
    ):
        if pad > kernel_size / 2:
            return
        test_input = torch.rand(input_shape)
        expected_result = F.avg_pool1d(
            test_input,
            kernel_size=kernel_size,
            stride=stride,
            padding=pad,
            ceil_mode=ceil_mode,
            count_include_pad=include_pad,
        )
        self._test_pool(
            context,
            test_input,
            [[kernel_size], [stride], [pad], ceil_mode, not include_pad],
            "avg_pool1d",
            ops.avg_pool1d,
            expected_result,
        ) 
开发者ID:apple,项目名称:coremltools,代码行数:24,代码来源:test_ops.py

示例2: __init__

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def __init__(self, mot_en_channels, body_en_channels, view_en_channels, de_channels):
        super(AutoEncoder3x, self).__init__()

        assert mot_en_channels[0] == de_channels[-1] and \
               mot_en_channels[-1] + body_en_channels[-1] + view_en_channels[-1] == de_channels[0]

        self.mot_encoder = Encoder(mot_en_channels)
        self.body_encoder = Encoder(body_en_channels, kernel_size=7,
                                    global_pool=F.max_pool1d, convpool=nn.MaxPool1d, compress=True)
        self.view_encoder = Encoder(view_en_channels, kernel_size=7,
                                    global_pool=F.avg_pool1d, convpool=nn.AvgPool1d, compress=True)
        self.decoder = Decoder(de_channels) 
开发者ID:ChrisWu1997,项目名称:2D-Motion-Retargeting,代码行数:14,代码来源:networks.py

示例3: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def forward(self, x):
        x = self.model(x)
        x = F.avg_pool1d(x, x.size()[2], stride=1)
        x = x.view(x.size()[0], -1, 1, 1)
        return x 
开发者ID:cmu-mlsp,项目名称:reconstructing_faces_from_voices,代码行数:7,代码来源:network.py

示例4: conv_block

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def conv_block(self, x, conv_layers, norm_layers, seg_len, res=True):
		out = x
		for layer in conv_layers:
			out = pad_layer(out, layer, self.seg_len)
			out = F.leaky_relu(out, negative_slope=self.ns)
		for layer in norm_layers:
			out = layer(out)
		if res:
			x_pad = F.pad(x, pad=(0, x.size(2) % 2), mode='constant' if seg_len < 64 else 'reflect')
			x_down = F.avg_pool1d(x_pad, kernel_size=2)
			out = x_down + out 
		return out 
开发者ID:andi611,项目名称:ZeroSpeech-TTS-without-T,代码行数:14,代码来源:model.py

示例5: batch_wordLstm

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def batch_wordLstm(self, id_char, batch_length, encoder_out, state):
        """
        :param id_char:  id word
        :param batch_length:  batch count
        :param encoder_out:  Encoder output
        :param state:  Decoder state
        :return:
        """
        if id_char is 0:
            h, c, z = self.init_hidden_cell(batch_length)
        else:
            h, c = state.word_hiddens[-1], state.word_cells[-1]
            # copy with the pos features
            last_pos = torch.zeros(batch_length, device=self.device, requires_grad=True).long()
            pos_id_array = np.array(state.pos_id[-1])
            last_pos.data.copy_(torch.from_numpy(pos_id_array))
            last_pos_embed = self.dropout(self.pos_embed(last_pos))

            # copy with the word features
            batch_char_embed = []
            for id_batch, id_batch_value in enumerate(state.words_startindex[-1]):
                chars_embed = []
                last_word_len = 0
                if id_batch_value is -1:
                    word_bucket = torch.zeros(1, 2 * self.config.rnn_hidden_dim, device=self.device, requires_grad=True)
                    batch_char_embed.append(word_bucket)
                    continue
                last_word_len = id_char - id_batch_value
                chars_embed.append((encoder_out.permute(1, 0, 2)[id_batch][id_batch_value:id_char].unsqueeze(0)))
                chars_embed = torch.cat(chars_embed, 1).permute(0, 2, 1)
                last_word_embed = F.avg_pool1d(chars_embed, chars_embed.size(2)).squeeze(2)
                batch_char_embed.append(last_word_embed)
            batch_char_embed = torch.cat(batch_char_embed, 0)
            concat = torch.cat((last_pos_embed, batch_char_embed), 1)
            z = self.dropout(torch.tanh(self.combine_linear(concat)))
        h_now, c_now = self.lstmcell(z, (h, c))

        return h_now, c_now 
开发者ID:bamtercelboo,项目名称:pytorch_Joint-Word-Segmentation-and-POS-Tagging,代码行数:40,代码来源:Decoder.py

示例6: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def forward(self, input_tensor):
        return functional.avg_pool1d(input_tensor, input_tensor.size()[2:]).view(
            input_tensor.size()[:2]
        ) 
开发者ID:microsoft,项目名称:nni,代码行数:6,代码来源:layers.py

示例7: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def forward(self, x, target, desc_data=None, get_attention=False):
        #get embeddings and apply dropout
        x = self.embed(x)
        x = self.embed_drop(x)
        x = x.transpose(1, 2)
        if self.pool == 'max':
            import pdb; pdb.set_trace()
            x = F.max_pool1d(x)
        else:
            x = F.avg_pool1d(x)
        logits = F.sigmoid(self.final(x))
        loss = self._get_loss(logits, target, diffs)
        return yhat, loss, None 
开发者ID:jamesmullenbach,项目名称:caml-mimic,代码行数:15,代码来源:models.py

示例8: avg_pool1d

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def avg_pool1d(self,x,seq_lens):
        # x:[N,L,O_in]
        out = []
        for index,t in enumerate(x):
            t = t[:seq_lens[index],:]
            t = torch.t(t).unsqueeze(0)
            out.append(F.avg_pool1d(t,t.size(2)))
        
        out = torch.cat(out).squeeze(2)
        return out 
开发者ID:hpzhao,项目名称:SummaRuNNer,代码行数:12,代码来源:CNN_RNN.py

示例9: _get_blocks_for_sentence

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def _get_blocks_for_sentence(self, sent):
        block_a = {}
        block_b = {}
        for ws in self.filter_widths:
            if np.isinf(ws):
                sent_flattened, sent_flattened_size = sent.contiguous().view(sent.size(0), 1, -1), sent.size(1) * sent.size(2)
                block_a[ws] = {
                    'max': F.max_pool1d(sent_flattened, sent_flattened_size).view(sent.size(0), -1),
                    'min': F.max_pool1d(-1 * sent_flattened, sent_flattened_size).view(sent.size(0), -1),
                    'mean': F.avg_pool1d(sent_flattened, sent_flattened_size).view(sent.size(0), -1)
                }
                continue

            holistic_conv_out_max = self.holistic_conv_layers_max[ws - 1](sent)
            holistic_conv_out_min = self.holistic_conv_layers_min[ws - 1](sent)
            holistic_conv_out_mean = self.holistic_conv_layers_mean[ws - 1](sent)
            block_a[ws] = {
                'max': F.max_pool1d(holistic_conv_out_max, holistic_conv_out_max.size(2)).contiguous().view(-1, self.n_holistic_filters),
                'min': F.max_pool1d(-1 * holistic_conv_out_min, holistic_conv_out_min.size(2)).contiguous().view(-1, self.n_holistic_filters),
                'mean': F.avg_pool1d(holistic_conv_out_mean, holistic_conv_out_mean.size(2)).contiguous().view(-1, self.n_holistic_filters)
            }

            per_dim_conv_out_max = self.per_dim_conv_layers_max[ws - 1](sent)
            per_dim_conv_out_min = self.per_dim_conv_layers_min[ws - 1](sent)
            block_b[ws] = {
                'max': F.max_pool1d(per_dim_conv_out_max, per_dim_conv_out_max.size(2)).contiguous().view(-1, self.in_channels, self.n_per_dim_filters),
                'min': F.max_pool1d(-1 * per_dim_conv_out_min, per_dim_conv_out_min.size(2)).contiguous().view(-1, self.in_channels, self.n_per_dim_filters)
            }
        return block_a, block_b 
开发者ID:castorini,项目名称:castor,代码行数:31,代码来源:model.py

示例10: test_avg_pool1d

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def test_avg_pool1d(self):
        inp = torch.randn(1, 1, 28, device='cuda', dtype=self.dtype)
        out = F.avg_pool1d(inp, kernel_size=5, stride=2, padding=2, ceil_mode=True, count_include_pad=False) 
开发者ID:NVIDIA,项目名称:apex,代码行数:5,代码来源:test_pyprof_nvtx.py

示例11: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def forward(self, x, b, t):
        x = F.avg_pool2d(x, x.size()[2:])
        x = x.view(b, t, -1)
        x = x.permute(0, 2, 1)
        f = F.avg_pool1d(x, t)
        f = f.view(b, self.feat_dim)
        return f 
开发者ID:InnovArul,项目名称:vidreid_cosegmentation,代码行数:9,代码来源:aggregation_layers.py

示例12: _get_blocks_for_sentence

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def _get_blocks_for_sentence(self, sent):
        block_a = {}
        block_b = {}
        for ws in self.filter_widths:
            if np.isinf(ws):
                sent_flattened, sent_flattened_size = sent.contiguous().view(sent.size(0), 1, -1), sent.size(1) * sent.size(2)
                block_a[ws] = {
                    'max': F.max_pool1d(sent_flattened, sent_flattened_size).view(sent.size(0), -1),
                    'min': F.max_pool1d(-1 * sent_flattened, sent_flattened_size).view(sent.size(0), -1),
                    'mean': F.avg_pool1d(sent_flattened, sent_flattened_size).view(sent.size(0), -1)
                }
                continue

            holistic_conv_out = self.holistic_conv_layers[ws - 1](sent)
            block_a[ws] = {
                'max': F.max_pool1d(holistic_conv_out, holistic_conv_out.size(2)).contiguous().view(-1, self.n_holistic_filters),
                'min': F.max_pool1d(-1 * holistic_conv_out, holistic_conv_out.size(2)).contiguous().view(-1, self.n_holistic_filters),
                'mean': F.avg_pool1d(holistic_conv_out, holistic_conv_out.size(2)).contiguous().view(-1, self.n_holistic_filters)
            }

            per_dim_conv_out = self.per_dim_conv_layers[ws - 1](sent)
            block_b[ws] = {
                'max': F.max_pool1d(per_dim_conv_out, per_dim_conv_out.size(2)).contiguous().view(-1, self.in_channels, self.n_per_dim_filters),
                'min': F.max_pool1d(-1 * per_dim_conv_out, per_dim_conv_out.size(2)).contiguous().view(-1, self.in_channels, self.n_per_dim_filters)
            }
        return block_a, block_b 
开发者ID:tuzhucheng,项目名称:sentence-similarity,代码行数:28,代码来源:mpcnn.py

示例13: forward

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def forward(self,x,doc_lens):
        sent_lens = torch.sum(torch.sign(x),dim=1).data 
        x = self.embed(x)                                                      # (N,L,D)
        # word level GRU
        H = self.args.hidden_size
        x = self.word_RNN(x)[0]                                                 # (N,2*H,L)
        #word_out = self.avg_pool1d(x,sent_lens)
        word_out = self.max_pool1d(x,sent_lens)
        # make sent features(pad with zeros)
        x = self.pad_doc(word_out,doc_lens)

        # sent level GRU
        sent_out = self.sent_RNN(x)[0]                                           # (B,max_doc_len,2*H)
        #docs = self.avg_pool1d(sent_out,doc_lens)                               # (B,2*H)
        docs = self.max_pool1d(sent_out,doc_lens)                                # (B,2*H)
        probs = []
        for index,doc_len in enumerate(doc_lens):
            valid_hidden = sent_out[index,:doc_len,:]                            # (doc_len,2*H)
            doc = F.tanh(self.fc(docs[index])).unsqueeze(0)
            s = Variable(torch.zeros(1,2*H))
            if self.args.device is not None:
                s = s.cuda()
            for position, h in enumerate(valid_hidden):
                h = h.view(1, -1)                                                # (1,2*H)
                # get position embeddings
                abs_index = Variable(torch.LongTensor([[position]]))
                if self.args.device is not None:
                    abs_index = abs_index.cuda()
                abs_features = self.abs_pos_embed(abs_index).squeeze(0)
                
                rel_index = int(round((position + 1) * 9.0 / doc_len))
                rel_index = Variable(torch.LongTensor([[rel_index]]))
                if self.args.device is not None:
                    rel_index = rel_index.cuda()
                rel_features = self.rel_pos_embed(rel_index).squeeze(0)
                
                # classification layer
                content = self.content(h) 
                salience = self.salience(h,doc)
                novelty = -1 * self.novelty(h,F.tanh(s))
                abs_p = self.abs_pos(abs_features)
                rel_p = self.rel_pos(rel_features)
                prob = F.sigmoid(content + salience + novelty + abs_p + rel_p + self.bias)
                s = s + torch.mm(prob,h)
                probs.append(prob)
        return torch.cat(probs).squeeze() 
开发者ID:hpzhao,项目名称:SummaRuNNer,代码行数:48,代码来源:RNN_RNN.py

示例14: _box_impl

# 需要导入模块: from torch.nn import functional [as 别名]
# 或者: from torch.nn.functional import avg_pool1d [as 别名]
def _box_impl(input,  # type: torch.Tensor
              size,  # type: List[int]
              border,  # type: str
              padding,  # type: List[Tuple[int, int]]
              stride,  # type: List[int]
              dilation,  # type: List[int]
              normalize,  # type: bool
              ):
    # type: (...)->torch.Tensor

    assert 3 <= len(input.shape) <= 5
    assert len(input.shape) == len(size) == len(padding) == len(stride) == len(dilation)
    assert padding[:2] == [(0, 0), (0, 0)]
    assert size[:2] == stride[:2] == dilation[:2]

    if dilation and any(d != 1 for d in dilation):
        raise utils.NNEFToolsException(
            "Box (avg or sum pooling) is only implemented for dilation = 1."
        )

    spatial_dims = len(input.shape) - 2

    pad = nnef_pad(input=input, padding=padding, border='constant' if border == 'ignore' else border)

    avg_pool = {1: F.avg_pool1d, 2: F.avg_pool2d, 3: F.avg_pool3d}[spatial_dims](
        input=pad,
        kernel_size=size[2:],
        stride=stride[2:],
        padding=0)

    if border == 'ignore' and normalize:
        ones = torch.ones_like(input)
        padded_ones = nnef_pad(input=ones, padding=padding, border='constant')
        avg_pool_ones = {1: F.avg_pool1d, 2: F.avg_pool2d, 3: F.avg_pool3d}[spatial_dims](
            input=padded_ones,
            kernel_size=size[2:],
            stride=stride[2:],
            padding=0)
        # If padding is big, zero averages can happen on the border, don't divide by zero
        avg_pool_ones = nnef_select(avg_pool_ones > 0, avg_pool_ones, torch.ones_like(avg_pool_ones))
        avg_pool /= avg_pool_ones

    if normalize:
        return avg_pool
    else:
        return avg_pool * utils.product(size) 
开发者ID:KhronosGroup,项目名称:NNEF-Tools,代码行数:48,代码来源:operations.py


注:本文中的torch.nn.functional.avg_pool1d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。