当前位置: 首页>>代码示例>>Python>>正文


Python multiprocessing.Value方法代码示例

本文整理汇总了Python中torch.multiprocessing.Value方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.Value方法的具体用法?Python multiprocessing.Value怎么用?Python multiprocessing.Value使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.multiprocessing的用法示例。


在下文中一共展示了multiprocessing.Value方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def create(cls):
        """Singleton factory."""
        if not hasattr(cls, 'length_to_eps'):
            # Maps episode length to list of episodes
            cls.length_to_eps = {}
            # Set of episode indices already in the cache
            cls.ep_indices = set()
            # List of batches if popping batches
            cls.batches = []
            # If all episodes have been loaded into memory
            cls.load_complete = Value(ctypes.c_bool, False)
            # Lock to access batches
            cls.batches_lock = Lock()
            # Lock to access length_to_eps
            cls.cache_lock = Lock()
            # Lock for condition variables
            cls.fill_cache_lock = RLock()
            # Condition notifying Loader to add to cache
            cls.add_to_cache_cv = Condition(lock=cls.fill_cache_lock)
            # Condition notifying teacher that cache has episodes
            cls.cache_filled_cv = Condition(lock=cls.fill_cache_lock) 
开发者ID:natashamjaques,项目名称:neural_chat,代码行数:23,代码来源:pytorch_data_teacher.py

示例2: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, config):
        self.config = config
        self.neat_config = self.load_neat_config()
        self.neat_config.pop_size = config.pop_size
        self.task_q = mp.SimpleQueue()
        self.result_q = mp.SimpleQueue()
        self.total_steps = 0
        stop = mp.Value('i', False)
        stats = SharedStats(config.state_dim)
        normalizers = [StaticNormalizer(config.state_dim) for _ in range(config.num_workers)]
        for normalizer in normalizers:
            normalizer.offline_stats.load(stats)
        workers = [Worker(id, normalizers[id], self.task_q, self.result_q, stop,
                          config, self.neat_config) for id in range(config.num_workers)]
        for w in workers: w.start()
        self.normalizers = normalizers
        self.stats = stats
        self.stop = stop 
开发者ID:ShangtongZhang,项目名称:DistributedES,代码行数:20,代码来源:neat_es.py

示例3: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, val=True):
        self.val = mp.Value("b", False)
        self.lock = mp.Lock() 
开发者ID:llSourcell,项目名称:OpenAI_Five_vs_Dota2_Explained,代码行数:5,代码来源:utils.py

示例4: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self):
    self.val = mp.Value('i', 0)
    self.lock = mp.Lock() 
开发者ID:Kaixhin,项目名称:Dist-A3C,代码行数:5,代码来源:utils.py

示例5: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self):
        self.actor_step = mp.Value('l', 0)
        self.learner_step = mp.Value('l', 0) 
开发者ID:jingweiz,项目名称:pytorch-distributed,代码行数:5,代码来源:logs.py

示例6: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, data):
    self.lock = mp.Lock()
    self.data = mp.Value("i", data) 
开发者ID:mjendrusch,项目名称:torchsupport,代码行数:5,代码来源:data.py

示例7: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, owner):
    super().__init__(owner)
    self.item_pointer = mp.Value("l", 0) 
开发者ID:mjendrusch,项目名称:torchsupport,代码行数:5,代码来源:buffer.py

示例8: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, distributor, collector,
               piecewise=True, n_workers=16):
    self.n_workers = n_workers
    self.piecewise = piecewise
    self.distributor = distributor
    self.collector = collector
    self.done = mp.Value("l", 0)
    self.procs = [] 
开发者ID:mjendrusch,项目名称:torchsupport,代码行数:10,代码来源:data_collector.py

示例9: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, owner):
    self.owner = owner
    self.read_lock = mp.Lock()
    self.write_lock = mp.Lock()
    self.read_count = mp.Value("l", 0)
    self.read_count.value = 0

    self.timestamp = mp.Value("l", 0)
    self.local_timestamp = 0 
开发者ID:mjendrusch,项目名称:torchsupport,代码行数:11,代码来源:control.py

示例10: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, opt: Opt, world):
        super().__init__(opt)
        self.inner_world = world
        self.numthreads = opt['numthreads']

        self.sync: Dict[str, Any] = {  # syncronization primitives
            # semaphores for counting queued examples
            'queued_sem': Semaphore(0),  # counts num exs to be processed
            'threads_sem': Semaphore(0),  # counts threads
            'reset_sem': Semaphore(0),  # allows threads to reset
            # flags for communicating with threads
            'reset_flag': Value('b', False),  # threads should reset
            'term_flag': Value('b', False),  # threads should terminate
            # counters
            'epoch_done_ctr': Value('i', 0),  # number of done threads
            'total_parleys': Value('l', 0),  # number of parleys in threads
        }

        self.threads: List[HogwildProcess] = []
        for i in range(self.numthreads):
            self.threads.append(HogwildProcess(i, opt, world.share(), self.sync))
            time.sleep(0.05)  # delay can help prevent deadlock in thread launches
        for t in self.threads:
            t.start()

        for _ in self.threads:
            # wait for threads to launch
            # this makes sure that no threads get examples before all are set up
            # otherwise they might reset one another after processing some exs
            self.sync['threads_sem'].acquire()  # type: ignore

        logging.info(f'{self.numthreads} threads initialized') 
开发者ID:facebookresearch,项目名称:ParlAI,代码行数:34,代码来源:worlds.py

示例11: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, opt, world):
        super().__init__(opt)
        self.inner_world = world
        self.numthreads = opt['numthreads']

        self.sync = {  # syncronization primitives
            # semaphores for counting queued examples
            'queued_sem': Semaphore(0),  # counts num exs to be processed
            'threads_sem': Semaphore(0),  # counts threads
            'reset_sem': Semaphore(0),  # allows threads to reset
            # flags for communicating with threads
            'reset_flag': Value('b', False),  # threads should reset
            'term_flag': Value('b', False),  # threads should terminate
            # counters
            'epoch_done_ctr': Value('i', 0),  # number of done threads
            'total_parleys': Value('l', 0),  # number of parleys in threads
        }

        self.threads = []
        for i in range(self.numthreads):
            self.threads.append(HogwildProcess(i, opt, world.share(), self.sync))
            time.sleep(0.05)  # delay can help prevent deadlock in thread launches
        for t in self.threads:
            t.start()

        for _ in self.threads:
            # wait for threads to launch
            # this makes sure that no threads get examples before all are set up
            # otherwise they might reset one another after processing some exs
            self.sync['threads_sem'].acquire()

        print(f'[ {self.numthreads} threads initialized ]') 
开发者ID:natashamjaques,项目名称:neural_chat,代码行数:34,代码来源:worlds.py

示例12: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, args, env_prototype, model_prototype, memory_prototype):
        super(ACERAgent, self).__init__(args, env_prototype, model_prototype, memory_prototype)
        self.logger.warning("<===================================> ACER-Master {Env(dummy) & Model}")

        # dummy_env just to get state_shape & action_dim
        self.dummy_env   = self.env_prototype(self.env_params, self.num_processes)
        self.state_shape = self.dummy_env.state_shape
        self.action_dim  = self.dummy_env.action_dim
        del self.dummy_env

        # global shared model
        self.model_params.state_shape = self.state_shape
        self.model_params.action_dim  = self.action_dim
        self.model = self.model_prototype(self.model_params)
        self._load_model(self.model_file)   # load pretrained model if provided
        self.model.share_memory()           # NOTE

        # learning algorithm # TODO: could also linearly anneal learning rate
        self.optimizer    = self.optim(self.model.parameters(), lr = self.lr)
        self.optimizer.share_memory()       # NOTE
        self.lr_adjusted  = mp.Value('d', self.lr) # adjusted lr

        # global shared average model: for 1st order trpo policy update
        self.avg_model    = self.model_prototype(self.model_params)
        self.avg_model.load_state_dict(self.model.state_dict())
        self.avg_model.share_memory()       # NOTE
        for param in self.avg_model.parameters(): param.requires_grad = False

        # global counters
        self.frame_step   = mp.Value('l', 0) # global frame step counter
        self.train_step   = mp.Value('l', 0) # global train step counter
        self.on_policy_train_step  = mp.Value('l', 0) # global on-policy  train step counter
        self.off_policy_train_step = mp.Value('l', 0) # global off-policy train step counter
        # global training stats
        self.p_loss_avg       = mp.Value('d', 0.) # global policy loss
        self.v_loss_avg       = mp.Value('d', 0.) # global value loss
        self.entropy_loss_avg = mp.Value('d', 0.) # global value loss
        self.loss_counter     = mp.Value('l', 0)  # storing this many losses
        self._reset_training_loggings() 
开发者ID:jingweiz,项目名称:pytorch-rl,代码行数:41,代码来源:acer.py

示例13: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self, args, env_prototype, model_prototype, memory_prototype):
        super(A3CAgent, self).__init__(args, env_prototype, model_prototype, memory_prototype)
        self.logger.warning("<===================================> A3C-Master {Env(dummy) & Model}")

        # dummy_env just to get state_shape & action_dim
        self.dummy_env   = self.env_prototype(self.env_params, self.num_processes)
        self.state_shape = self.dummy_env.state_shape
        self.action_dim  = self.dummy_env.action_dim
        del self.dummy_env

        # global shared model
        self.model_params.state_shape = self.state_shape
        self.model_params.action_dim  = self.action_dim
        self.model = self.model_prototype(self.model_params)
        self._load_model(self.model_file)   # load pretrained model if provided
        self.model.share_memory()           # NOTE

        # learning algorithm
        self.optimizer    = self.optim(self.model.parameters(), lr = self.lr)
        self.optimizer.share_memory()       # NOTE
        self.lr_adjusted  = mp.Value('d', self.lr) # adjusted lr

        # global counters
        self.frame_step   = mp.Value('l', 0) # global frame step counter
        self.train_step   = mp.Value('l', 0) # global train step counter
        # global training stats
        self.p_loss_avg   = mp.Value('d', 0.) # global policy loss
        self.v_loss_avg   = mp.Value('d', 0.) # global value loss
        self.loss_avg     = mp.Value('d', 0.) # global loss
        self.loss_counter = mp.Value('l', 0)  # storing this many losses
        self._reset_training_loggings() 
开发者ID:jingweiz,项目名称:pytorch-rl,代码行数:33,代码来源:a3c.py

示例14: __init__

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def __init__(self):
        self.val = mp.Value('i', 0)
        self.lock = mp.Lock() 
开发者ID:Feryal,项目名称:a3c-mujoco,代码行数:5,代码来源:utils.py

示例15: create

# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Value [as 别名]
def create(cls):
        if not hasattr(cls, 'length_to_eps'):
            # Maps episode length to list of episodes
            cls.length_to_eps = {}
        if not hasattr(cls, 'ep_indices'):
            # Set of episode indices already in the cache
            cls.ep_indices = set()
        if not hasattr(cls, 'batches'):
            # List of batches if popping batches
            cls.batches = []
        if not hasattr(cls, 'load_complete'):
            # If all episodes have been loaded into memory
            cls.load_complete = Value(ctypes.c_bool, False)
        if not hasattr(cls, 'batches_lock'):
            # Lock to access batches
            cls.batches_lock = Lock()
        if not hasattr(cls, 'cache_lock'):
            # Lock to access length_to_eps
            cls.cache_lock = Lock()
        if not hasattr(cls, 'fill_cache_lock'):
            # Lock for condition variables
            cls.fill_cache_lock = RLock()
        if not hasattr(cls, 'add_to_cache_cv'):
            # Condition notifying Loader to add to cache
            cls.add_to_cache_cv = Condition(lock=cls.fill_cache_lock)
        if not hasattr(cls, 'cache_filled_cv'):
            # Condition notifying teacher that cache has episodes
            cls.cache_filled_cv = Condition(lock=cls.fill_cache_lock) 
开发者ID:THUDM,项目名称:KBRD,代码行数:30,代码来源:pytorch_data_teacher.py


注:本文中的torch.multiprocessing.Value方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。