本文整理汇总了Python中torch.multiprocessing.SimpleQueue方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.SimpleQueue方法的具体用法?Python multiprocessing.SimpleQueue怎么用?Python multiprocessing.SimpleQueue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.SimpleQueue方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, config):
self.config = config
self.neat_config = self.load_neat_config()
self.neat_config.pop_size = config.pop_size
self.task_q = mp.SimpleQueue()
self.result_q = mp.SimpleQueue()
self.total_steps = 0
stop = mp.Value('i', False)
stats = SharedStats(config.state_dim)
normalizers = [StaticNormalizer(config.state_dim) for _ in range(config.num_workers)]
for normalizer in normalizers:
normalizer.offline_stats.load(stats)
workers = [Worker(id, normalizers[id], self.task_q, self.result_q, stop,
config, self.neat_config) for id in range(config.num_workers)]
for w in workers: w.start()
self.normalizers = normalizers
self.stats = stats
self.stop = stop
示例2: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.index_queue = multiprocessing.SimpleQueue()
self.data_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queue, self.data_queue, self.collate_fn, np.random.randint(0, 4294967296, dtype='uint32')))
for _ in range(self.num_workers)]
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
if self.pin_memory:
in_data = self.data_queue
self.data_queue = queue.Queue()
self.pin_thread = threading.Thread(
target=_pin_memory_loop,
args=(in_data, self.data_queue, self.done_event))
self.pin_thread.daemon = True
self.pin_thread.start()
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
示例3: get_batch
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def get_batch(
flags,
free_queue: mp.SimpleQueue,
full_queue: mp.SimpleQueue,
buffers: Buffers,
initial_agent_state_buffers,
timings,
lock=threading.Lock(),
):
with lock:
timings.time("lock")
indices = [full_queue.get() for _ in range(flags.batch_size)]
timings.time("dequeue")
batch = {
key: torch.stack([buffers[key][m] for m in indices], dim=1) for key in buffers
}
initial_agent_state = (
torch.cat(ts, dim=1)
for ts in zip(*[initial_agent_state_buffers[m] for m in indices])
)
timings.time("batch")
for m in indices:
free_queue.put(m)
timings.time("enqueue")
batch = {k: t.to(device=flags.device, non_blocking=True) for k, t in batch.items()}
initial_agent_state = tuple(
t.to(device=flags.device, non_blocking=True) for t in initial_agent_state
)
timings.time("device")
return batch, initial_agent_state
示例4: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.index_queue = multiprocessing.SimpleQueue()
self.data_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queue, self.data_queue, self.collate_fn))
for _ in range(self.num_workers)]
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
if self.pin_memory:
in_data = self.data_queue
self.data_queue = queue.Queue()
self.pin_thread = threading.Thread(
target=_pin_memory_loop,
args=(in_data, self.data_queue, self.done_event))
self.pin_thread.daemon = True
self.pin_thread.start()
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
示例5: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, threadsafe=False, shared=None):
self._threadsafe = threadsafe
if self._threadsafe and shared is None:
# Threadsafe metrics tracking works by keeping a queue that workers can
# push updates to. the main worker works through the queue at report
# time. We could add some buffering to improve performance, but we
# are deprioritizing hogwild performance at this time.
self._buffer = None
self._queue = multiprocessing.SimpleQueue()
self._worker = False
self._data = {}
elif shared and 'queue' in shared:
# This is a clone, in threadsafe mode
self._buffer = {}
self._queue = shared['queue']
self._worker = True
self._data = None
elif shared and 'data' in shared:
# This is a clone, in non-threadsafe mode
self._buffer = None
self._queue = None
self._worker = False
self._data = shared['data']
else:
# The original in non-threadsafe mode
self._buffer = None
self._queue = None
self._worker = False
self._data = {}
示例6: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queue = multiprocessing.SimpleQueue()
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
base_seed = torch.LongTensor(1).random_(0, 2**31-1)[0]
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
base_seed + i, self.worker_init_fn, i))
for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.worker_manager_thread = threading.Thread(
target=_worker_manager_loop,
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
maybe_device_id))
self.worker_manager_thread.daemon = True
self.worker_manager_thread.start()
else:
self.data_queue = self.worker_result_queue
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
_update_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
示例7: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queue = multiprocessing.SimpleQueue()
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
base_seed = torch.LongTensor(1).random_(0, 2**31-1)[0]
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
base_seed + i, self.worker_init_fn, i))
for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.worker_manager_thread = threading.Thread(
target=_worker_manager_loop,
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
maybe_device_id))
self.worker_manager_thread.daemon = True
self.worker_manager_thread.start()
else:
self.data_queue = self.worker_result_queue
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
_set_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
示例8: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory
self.use_thread = loader.use_thread
self.pin_done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.index_queue = queue.Queue() if self.use_thread else multiprocessing.SimpleQueue()
self.data_queue = queue.Queue() if self.use_thread else multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
if self.use_thread:
self.workers = [
threading.Thread(
target=_worker_thread_loop,
args=(self.dataset, self.index_queue, self.data_queue, self.collate_fn))
for _ in range(self.num_workers)]
else:
self.workers = [
multiprocessing.Process(
target=_worker_process_loop,
args=(self.dataset, self.index_queue, self.data_queue, self.collate_fn))
for _ in range(self.num_workers)]
for w in self.workers:
w.daemon = True
w.start()
if self.pin_memory:
in_data = self.data_queue
self.data_queue = queue.Queue()
self.pin_thread = threading.Thread(
target=_pin_memory_loop,
args=(in_data, self.data_queue, self.pin_done_event))
self.pin_thread.daemon = True
self.pin_thread.start()
for _ in range(2 * self.num_workers):
self._put_indices()
示例9: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queues = [multiprocessing.SimpleQueue() for _ in range(self.num_workers)]
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
base_seed = torch.LongTensor(1).random_()[0]
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queues[i],
self.worker_result_queue, self.collate_fn, base_seed + i,
self.worker_init_fn, i))
for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.worker_manager_thread = threading.Thread(
target=_worker_manager_loop,
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
maybe_device_id))
self.worker_manager_thread.daemon = True
self.worker_manager_thread.start()
else:
self.data_queue = self.worker_result_queue
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
_update_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
示例10: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)]
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queues[i],
self.worker_result_queue, self.collate_fn, self.worker_init_fn, i))
for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.worker_manager_thread = threading.Thread(
target=_worker_manager_loop,
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
maybe_device_id))
self.worker_manager_thread.daemon = True
self.worker_manager_thread.start()
else:
self.data_queue = self.worker_result_queue
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
_set_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()
示例11: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import SimpleQueue [as 别名]
def __init__(self, loader):
self.random_vars = loader.random_vars
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event()
self.sample_iter = iter(self.batch_sampler)
base_seed = torch.LongTensor(1).random_().item()
if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)]
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {}
self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queues[i],
self.worker_result_queue, self.collate_fn, base_seed + i,
self.worker_init_fn, i))
for i in range(self.num_workers)]
if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.worker_manager_thread = threading.Thread(
target=_worker_manager_loop,
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
maybe_device_id))
self.worker_manager_thread.daemon = True
self.worker_manager_thread.start()
else:
self.data_queue = self.worker_result_queue
for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start()
_update_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices()