本文整理汇总了Python中torch.multiprocessing.Manager方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.Manager方法的具体用法?Python multiprocessing.Manager怎么用?Python multiprocessing.Manager使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.Manager方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: parallelize_sessions
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def parallelize_sessions(self, global_nets=None):
mp_dict = mp.Manager().dict()
# spec_util.tick(self.spec, 'session')
# mp_run_session(deepcopy(self.spec), global_nets, mp_dict)
workers = []
for _s in range(self.spec['meta']['max_session']):
spec_util.tick(self.spec, 'session')
w = mp.Process(target=mp_run_session, args=(deepcopy(self.spec), global_nets, mp_dict))
w.start()
workers.append(w)
for w in workers:
w.join()
session_metrics_list = [mp_dict[idx] for idx in sorted(mp_dict.keys())]
return session_metrics_list
示例2: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def __init__(self, capacity, buffer_gpu):
self.capacity = capacity; self.buffer_gpu = buffer_gpu; self.counter = 0
self.manager = Manager()
self.tuples = self.manager.list() #Temporary shared buffer to get experiences from processes
self.s = []; self.ns = []; self.a = []; self.r = []; self.done = []
# Temporary tensors that cane be loaded in GPU for fast sampling during gradient updates (updated each gen) --> Faster sampling - no need to cycle experiences in and out of gpu 1000 times
self.sT = None; self.nsT = None; self.aT = None; self.rT = None; self.doneT = None
示例3: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def __init__(self, shared: bool = False, data: dict = None):
if data is None:
data = {}
if shared:
# NOTE(kamo): Don't set manager as a field because Manager, which includes
# weakref object, causes following error with method="spawn",
# "TypeError: can't pickle weakref objects"
self.cache = multiprocessing.Manager().dict(**data)
else:
self.manager = None
self.cache = dict(**data)
self.size = 0
示例4: __call__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def __call__(self,
instances: Iterable[Instance],
num_epochs: int = None,
shuffle: bool = True) -> Iterator[TensorDict]:
# If you run it forever, the multiprocesses won't shut down correctly.
# TODO(joelgrus) find a solution for this
if num_epochs is None:
raise ConfigurationError("Multiprocess Iterator must be run for a fixed number of epochs")
manager = Manager()
output_queue = manager.Queue(self.output_queue_size)
input_queue = manager.Queue(self.output_queue_size * self.batch_size)
# Start process that populates the queue.
self.queuer = Process(target=_queuer, args=(instances, input_queue, self.num_workers, num_epochs))
self.queuer.start()
# Start the tensor-dict workers.
for i in range(self.num_workers):
args = (input_queue, output_queue, self.iterator, shuffle, i)
process = Process(target=_create_tensor_dicts, args=args)
process.start()
self.processes.append(process)
num_finished = 0
while num_finished < self.num_workers:
item = output_queue.get()
if isinstance(item, int):
num_finished += 1
logger.info(f"worker {item} finished ({num_finished} / {self.num_workers})")
else:
yield item
for process in self.processes:
process.join()
self.processes.clear()
if self.queuer is not None:
self.queuer.join()
self.queuer = None
示例5: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def __init__(self, env, pol, num_parallel=8, prepro=None, seed=256):
self.env = env
self.pol = copy.deepcopy(pol)
self.pol.to('cpu')
self.pol.share_memory()
self.pol.eval()
self.num_parallel = num_parallel
self.n_steps_global = torch.tensor(0, dtype=torch.long).share_memory_()
self.max_steps = torch.tensor(0, dtype=torch.long).share_memory_()
self.n_epis_global = torch.tensor(
0, dtype=torch.long).share_memory_()
self.max_epis = torch.tensor(0, dtype=torch.long).share_memory_()
self.exec_flags = [torch.tensor(
0, dtype=torch.long).share_memory_() for _ in range(self.num_parallel)]
self.deterministic_flag = torch.tensor(
0, dtype=torch.uint8).share_memory_()
self.epis = mp.Manager().list()
self.processes = []
for ind in range(self.num_parallel):
p = mp.Process(target=mp_sample, args=(self.pol, env, self.max_steps, self.max_epis, self.n_steps_global,
self.n_epis_global, self.epis, self.exec_flags[ind], self.deterministic_flag, ind, prepro, seed))
p.start()
self.processes.append(p)
示例6: colorize
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def colorize(request, context):
try:
manager = Manager()
return_dict = manager.dict()
p = Process(target=mp_colorize, args=(request.img_input,
request.render_factor,
return_dict))
p.start()
p.join()
response = return_dict.get("response", None)
if not response or "error" in response:
error_msg = response.get("error", None) if response else None
log.error(error_msg)
context.set_details(error_msg)
context.set_code(grpc.StatusCode.INTERNAL)
return Output()
log.debug("colorize({})={}".format(request.img_input[:50], response["img_colorized"][:50]))
return Output(img_colorized=response["img_colorized"])
except Exception as e:
traceback.print_exc()
log.error(e)
return Output()
# The gRPC serve function.
#
# Params:
# max_workers: pool of threads to execute calls asynchronously
# port: gRPC server port
#
# Add all your classes to the server here.
# (from generated .py files by protobuf compiler)
示例7: parallelize_sessions
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def parallelize_sessions(self, global_nets=None):
mp_dict = mp.Manager().dict()
workers = []
spec = deepcopy(self.spec)
for _s in range(spec['meta']['max_session']):
spec_util.tick(spec, 'session')
w = mp.Process(target=mp_run_session, args=(spec, global_nets, mp_dict))
w.start()
workers.append(w)
for w in workers:
w.join()
session_metrics_list = [mp_dict[idx] for idx in sorted(mp_dict.keys())]
return session_metrics_list
示例8: recognize_scene
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def recognize_scene(self, request, context):
"""Wraps the scene recognition model to make sure inputs and outputs match the service requirements."""
# Store the names of the images to delete them afterwards
created_images = []
# Python command call arguments. Key = argument name, value = tuple(type, required?, default_value)
arguments = {"input_image": ("image", True, None),
"predict": ("string", True, self.prediction_list)}
# Treat inputs
try:
image_path, predict, file_index_str = self.treat_inputs(request, arguments, created_images)
except HTTPError as e:
error_message = "Error downloading the input image \n" + str(e)
log.error(error_message)
self.result.data = error_message
context.set_details(error_message)
context.set_code(grpc.StatusCode.INTERNAL)
return self.result
except Exception as e:
log.error(e)
self.result.data = e
context.set_details(str(e))
context.set_code(grpc.StatusCode.INTERNAL)
return self.result
# Get cam (color activation mappings) file path
input_filename = os.path.split(created_images[0])[1]
log.debug("Input file name: {}".format(input_filename))
output_image_path = self.output_dir + '/' + input_filename
log.debug("Output image path (cam_path): {}".format(output_image_path))
created_images.append(output_image_path)
manager = Manager()
return_dict = manager.dict()
p = Process(target=mp_recognize, args=(image_path,
predict,
output_image_path,
return_dict))
p.start()
p.join()
response = return_dict.get("response", None)
if not response or "error" in response:
error_msg = response.get("error", None) if response else None
log.error(error_msg)
context.set_details(error_msg)
context.set_code(grpc.StatusCode.INTERNAL)
return SceneRecognitionResult()
# Prepare gRPC output message
self.result = SceneRecognitionResult()
log.debug("Got result.")
self.result.data = json.dumps(response)
log.debug("Output generated. Service successfully completed.")
for image in created_images:
service.serviceUtils.clear_file(image)
return self.result
示例9: per_step
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def per_step(valLoader,
model,
criterion,
downsamplingFactor):
model.eval()
criterion.eval()
avgPER = 0
varPER = 0
nItems = 0
print("Starting the PER computation through beam search")
bar = progressbar.ProgressBar(maxval=len(valLoader))
bar.start()
for index, data in enumerate(valLoader):
bar.update(index)
with torch.no_grad():
seq, sizeSeq, phone, sizePhone = prepare_data(data)
c_feature = model(seq)
sizeSeq = sizeSeq / downsamplingFactor
predictions = torch.nn.functional.softmax(criterion.getPrediction(c_feature),
dim=2).cpu()
c_feature = c_feature
phone = phone.cpu()
sizeSeq = sizeSeq.cpu()
sizePhone = sizePhone.cpu()
mutex = Lock()
manager = Manager()
poolData = manager.list()
processes = []
for b in range(sizeSeq.size(0)):
l_ = min(sizeSeq[b] // 4, predictions.size(1))
s_ = sizePhone[b]
p = torch.multiprocessing.Process(target=get_local_per,
args=(poolData, mutex, predictions[b, :l_].view(l_, -1).numpy(),
phone[b, :s_].view(-1).numpy().astype(np.int32), criterion.BLANK_LABEL))
p.start()
processes.append(p)
for p in processes:
p.join()
avgPER += sum([x for x in poolData])
varPER += sum([x*x for x in poolData])
nItems += len(poolData)
bar.finish()
avgPER /= nItems
varPER /= nItems
varPER -= avgPER**2
print(f"Average PER {avgPER}")
print(f"Standard deviation PER {math.sqrt(varPER)}")
示例10: propagate
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def propagate(nnf, feat_A, feat_AP, feat_B, feat_BP, patch_size, iters=2, rand_search_radius=200):
print("\tpatch_size:{}; num_iters:{}; rand_search_radius:{}".format(patch_size, iters, rand_search_radius))
nnd = np.zeros(nnf.shape[:2])
A_size = feat_A.shape[:2]
B_size = feat_B.shape[:2]
for ay in range(A_size[0]):
for ax in range(A_size[1]):
by, bx = nnf[ay, ax]
nnd[ay, ax] = cal_dist(ay, ax, by, bx, feat_A, feat_AP, feat_B, feat_BP, A_size, B_size, patch_size)
manager = mp.Manager()
q = manager.Queue(A_size[1] * A_size[0])
cpus = min(mp.cpu_count(), A_size[0] // 20 + 1)
for i in range(iters):
p = Pool(cpus)
ay_start = 0
while ay_start < A_size[0]:
ax_start = 0
while ax_start < A_size[1]:
p.apply_async(pixelmatch, args=(q, ax_start, ay_start,
cpus,
nnf, nnd,
A_size, B_size,
feat_A, feat_AP,
feat_B, feat_BP,
patch_size,
rand_search_radius,))
ax_start += A_size[1] // cpus + 1
ay_start += A_size[0] // cpus + 1
p.close()
p.join()
while not q.empty():
ax, ay, xbest, ybest, dbest = q.get()
nnf[ay, ax] = np.array([ybest, xbest])
nnd[ay, ax] = dbest
return nnf, nnd
示例11: run_tracker
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Manager [as 别名]
def run_tracker(self):
"""
Run self.pipeline on DAVIS
"""
num_gpu = self._hyper_params["device_num"]
all_devs = [torch.device("cuda:%d" % i) for i in range(num_gpu)]
logger.info('runing test on devices {}'.format(all_devs))
davis_root = self._hyper_params["data_root"]
logger.info('Using dataset %s at: %s' % (self.dataset_name, davis_root))
# setup dataset
dataset = davis_benchmark.load_dataset(davis_root, self.dataset_name)
self.dataset = dataset
keys = list(dataset.keys())
keys.sort()
nr_records = len(keys)
pbar = tqdm(total=nr_records)
mean_speed = -1
speed_list = []
manager = Manager()
speed_queue = manager.Queue(500)
# set worker
if num_gpu == 0:
self.worker(keys, all_devs[0], self.dataset, speed_queue)
for i in range(nr_records):
s = speed_queue.get()
speed_list.append(s)
pbar.update(1)
else:
nr_video = math.ceil(nr_records / num_gpu)
procs = []
for i in range(num_gpu):
start = i * nr_video
end = min(start + nr_video, nr_records)
split_records = keys[start:end]
proc = mp.Process(target=self.worker,
args=(split_records, all_devs[i],
self.dataset, speed_queue))
logger.info('process:%d, start:%d, end:%d' % (i, start, end))
proc.start()
procs.append(proc)
for i in range(nr_records):
s = speed_queue.get()
speed_list.append(s)
pbar.update(1)
for p in procs:
p.join()
# print result
mean_speed = float(np.mean(speed_list))
logger.info('Mean Speed: {:.2f} FPS'.format(mean_speed))
self._state['speed'] = mean_speed