本文整理汇总了Python中torch.multiprocessing.Lock方法的典型用法代码示例。如果您正苦于以下问题:Python multiprocessing.Lock方法的具体用法?Python multiprocessing.Lock怎么用?Python multiprocessing.Lock使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.multiprocessing
的用法示例。
在下文中一共展示了multiprocessing.Lock方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, data_scheme, n_bs, n_t, n_agents, batch_size, is_cuda=True, is_shared_mem=True, logging_struct=None):
self.buffer = BatchEpisodeBuffer(data_scheme=data_scheme,
n_bs=n_bs,
n_t=n_t,
n_agents=n_agents,
is_cuda=is_cuda,
is_shared_mem=True)
if is_cuda:
self._to_cuda()
if is_shared_mem:
self._to_shared_mem()
self.queue_head_pos = 0
self.lock = mp.Lock() # TODO: could make locks more granular!
self.len = 0
pass
示例2: create
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def create(cls):
"""Singleton factory."""
if not hasattr(cls, 'length_to_eps'):
# Maps episode length to list of episodes
cls.length_to_eps = {}
# Set of episode indices already in the cache
cls.ep_indices = set()
# List of batches if popping batches
cls.batches = []
# If all episodes have been loaded into memory
cls.load_complete = Value(ctypes.c_bool, False)
# Lock to access batches
cls.batches_lock = Lock()
# Lock to access length_to_eps
cls.cache_lock = Lock()
# Lock for condition variables
cls.fill_cache_lock = RLock()
# Condition notifying Loader to add to cache
cls.add_to_cache_cv = Condition(lock=cls.fill_cache_lock)
# Condition notifying teacher that cache has episodes
cls.cache_filled_cv = Condition(lock=cls.fill_cache_lock)
示例3: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, val=True):
self.val = mp.Value("b", False)
self.lock = mp.Lock()
示例4: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self):
self.val = mp.Value('i', 0)
self.lock = mp.Lock()
示例5: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, args):
super(SharedMemory, self).__init__(args)
# params for this memory
# setup
self.pos = mp.Value('l', 0)
self.full = mp.Value('b', False)
if self.tensortype == torch.FloatTensor:
self.state0s = torch.zeros((self.memory_size, ) + tuple(self.state_shape), dtype=torch.float32)
self.state1s = torch.zeros((self.memory_size, ) + tuple(self.state_shape), dtype=torch.float32)
elif self.tensortype == torch.ByteTensor:
self.state0s = torch.zeros((self.memory_size, ) + tuple(self.state_shape), dtype=torch.uint8)
self.state1s = torch.zeros((self.memory_size, ) + tuple(self.state_shape), dtype=torch.uint8)
self.actions = torch.zeros( self.memory_size, self.action_shape)
self.rewards = torch.zeros( self.memory_size, self.reward_shape)
self.gamma1s = torch.zeros( self.memory_size, self.gamma_shape)
self.terminal1s = torch.zeros(self.memory_size, self.terminal_shape)
self.state0s.share_memory_()
self.actions.share_memory_()
self.rewards.share_memory_()
self.gamma1s.share_memory_()
self.state1s.share_memory_()
self.terminal1s.share_memory_()
self.memory_lock = mp.Lock()
示例6: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, data):
self.lock = mp.Lock()
self.data = mp.Value("i", data)
示例7: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, x, y):
self.ctrl = ReadWriteControl(self)
self.ctrl_flick = mp.Lock()
self.which_buffer = mp.Value("l", 0)
self.buffers = [x, y]
示例8: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, owner):
self.owner = owner
self.read_lock = mp.Lock()
self.write_lock = mp.Lock()
self.read_count = mp.Value("l", 0)
self.read_count.value = 0
self.timestamp = mp.Value("l", 0)
self.local_timestamp = 0
示例9: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self, grad_norm, optimizer, scheduler):
self.optimizer : torch.optim.Optimizer = optimizer
self.scheduler = scheduler
self.grad_norm = grad_norm
self.global_step = torch.tensor(0)
self.lock = mp.Lock()
示例10: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self):
self.val = mp.Value('i', 0)
self.lock = mp.Lock()
示例11: create
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def create(cls):
if not hasattr(cls, 'length_to_eps'):
# Maps episode length to list of episodes
cls.length_to_eps = {}
if not hasattr(cls, 'ep_indices'):
# Set of episode indices already in the cache
cls.ep_indices = set()
if not hasattr(cls, 'batches'):
# List of batches if popping batches
cls.batches = []
if not hasattr(cls, 'load_complete'):
# If all episodes have been loaded into memory
cls.load_complete = Value(ctypes.c_bool, False)
if not hasattr(cls, 'batches_lock'):
# Lock to access batches
cls.batches_lock = Lock()
if not hasattr(cls, 'cache_lock'):
# Lock to access length_to_eps
cls.cache_lock = Lock()
if not hasattr(cls, 'fill_cache_lock'):
# Lock for condition variables
cls.fill_cache_lock = RLock()
if not hasattr(cls, 'add_to_cache_cv'):
# Condition notifying Loader to add to cache
cls.add_to_cache_cv = Condition(lock=cls.fill_cache_lock)
if not hasattr(cls, 'cache_filled_cv'):
# Condition notifying teacher that cache has episodes
cls.cache_filled_cv = Condition(lock=cls.fill_cache_lock)
示例12: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self):
self.val = mp.Value("b", False)
self.lock = mp.Lock()
示例13: __init__
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def __init__(self,
env_name,
env_kwargs,
batch_size,
policy,
baseline,
env=None,
seed=None,
num_workers=1):
super(MultiTaskSampler, self).__init__(env_name,
env_kwargs,
batch_size,
policy,
seed=seed,
env=env)
self.num_workers = num_workers
self.task_queue = mp.JoinableQueue()
self.train_episodes_queue = mp.Queue()
self.valid_episodes_queue = mp.Queue()
policy_lock = mp.Lock()
self.workers = [SamplerWorker(index,
env_name,
env_kwargs,
batch_size,
self.env.observation_space,
self.env.action_space,
self.policy,
deepcopy(baseline),
self.seed,
self.task_queue,
self.train_episodes_queue,
self.valid_episodes_queue,
policy_lock)
for index in range(num_workers)]
for worker in self.workers:
worker.daemon = True
worker.start()
self._waiting_sample = False
self._event_loop = asyncio.get_event_loop()
self._train_consumer_thread = None
self._valid_consumer_thread = None
示例14: per_step
# 需要导入模块: from torch import multiprocessing [as 别名]
# 或者: from torch.multiprocessing import Lock [as 别名]
def per_step(valLoader,
model,
criterion,
downsamplingFactor):
model.eval()
criterion.eval()
avgPER = 0
varPER = 0
nItems = 0
print("Starting the PER computation through beam search")
bar = progressbar.ProgressBar(maxval=len(valLoader))
bar.start()
for index, data in enumerate(valLoader):
bar.update(index)
with torch.no_grad():
seq, sizeSeq, phone, sizePhone = prepare_data(data)
c_feature = model(seq)
sizeSeq = sizeSeq / downsamplingFactor
predictions = torch.nn.functional.softmax(criterion.getPrediction(c_feature),
dim=2).cpu()
c_feature = c_feature
phone = phone.cpu()
sizeSeq = sizeSeq.cpu()
sizePhone = sizePhone.cpu()
mutex = Lock()
manager = Manager()
poolData = manager.list()
processes = []
for b in range(sizeSeq.size(0)):
l_ = min(sizeSeq[b] // 4, predictions.size(1))
s_ = sizePhone[b]
p = torch.multiprocessing.Process(target=get_local_per,
args=(poolData, mutex, predictions[b, :l_].view(l_, -1).numpy(),
phone[b, :s_].view(-1).numpy().astype(np.int32), criterion.BLANK_LABEL))
p.start()
processes.append(p)
for p in processes:
p.join()
avgPER += sum([x for x in poolData])
varPER += sum([x*x for x in poolData])
nItems += len(poolData)
bar.finish()
avgPER /= nItems
varPER /= nItems
varPER -= avgPER**2
print(f"Average PER {avgPER}")
print(f"Standard deviation PER {math.sqrt(varPER)}")