本文整理汇总了Python中torch.mm方法的典型用法代码示例。如果您正苦于以下问题:Python torch.mm方法的具体用法?Python torch.mm怎么用?Python torch.mm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.mm方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_grad
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def test_grad():
input=tensor(([1,2,3],[4,5,6],[7,8,9]),dtype=torch.float)
#weight=tensor(([0.1,0.2,0.3,0.4],[0.1,0.2,0.3,0.4],[0.1,0.2,0.3,0.4]),requires_grad=True)
weight=tensor(torch.rand(3, 4),requires_grad=True)
#input=input.unsqueeze(0)
print(input,weight)
pre=torch.mm(input,weight)
#loss1=f.multilabel_soft_margin_loss()
loss2=nn.MultiLabelMarginLoss()
lable1=tensor(([0, 1, 1,0],),dtype=torch.float)
lable2 = tensor(([0, 1, 1,0], [1, 0, 0,0], [1, 0,1 ,1]), dtype=torch.long)
print(pre,lable1)
loss1=f.multilabel_soft_margin_loss(pre,lable1,reduction='sum')
loss1.backward()
print('weight.grad.data1:',weight.grad.data)
# loss2 = loss2(pre, lable2)
# loss2.backward()
# print('weight.grad.data2:', weight.grad.data)
示例2: fuse_conv_and_bn
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def fuse_conv_and_bn(conv, bn):
# https://tehnokv.com/posts/fusing-batchnorm-and-conv/
with torch.no_grad():
# init
fusedconv = torch.nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True)
# prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
# prepare spatial bias
if conv.bias is not None:
b_conv = conv.bias
else:
b_conv = torch.zeros(conv.weight.size(0))
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(b_conv + b_bn)
return fusedconv
示例3: cmmd
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def cmmd(source, target, s_label, t_label, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
s_label = s_label.cpu()
s_label = s_label.view(32,1)
s_label = torch.zeros(32, 31).scatter_(1, s_label.data, 1)
s_label = Variable(s_label).cuda()
t_label = t_label.cpu()
t_label = t_label.view(32, 1)
t_label = torch.zeros(32, 31).scatter_(1, t_label.data, 1)
t_label = Variable(t_label).cuda()
batch_size = int(source.size()[0])
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
loss = 0
XX = kernels[:batch_size, :batch_size]
YY = kernels[batch_size:, batch_size:]
XY = kernels[:batch_size, batch_size:]
loss += torch.mean(torch.mm(s_label, torch.transpose(s_label, 0, 1)) * XX +
torch.mm(t_label, torch.transpose(t_label, 0, 1)) * YY -
2 * torch.mm(s_label, torch.transpose(t_label, 0, 1)) * XY)
return loss
示例4: _mix_rbf_kernel
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def _mix_rbf_kernel(X, Y, sigma_list):
assert(X.size(0) == Y.size(0))
m = X.size(0)
Z = torch.cat((X, Y), 0)
ZZT = torch.mm(Z, Z.t())
diag_ZZT = torch.diag(ZZT).unsqueeze(1)
Z_norm_sqr = diag_ZZT.expand_as(ZZT)
exponent = Z_norm_sqr - 2 * ZZT + Z_norm_sqr.t()
K = 0.0
for sigma in sigma_list:
gamma = 1.0 / (2 * sigma**2)
K += torch.exp(-gamma * exponent)
return K[:m, :m], K[:m, m:], K[m:, m:], len(sigma_list)
示例5: __call__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def __call__(self, tensor):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be whitened.
Returns:
Tensor: Transformed image.
"""
if tensor.size(0) * tensor.size(1) * \
tensor.size(2) != self.transformation_matrix.size(0):
raise ValueError(
"tensor and transformation matrix have incompatible shape." +
"[{} x {} x {}] != ".format(
*
tensor.size()) +
"{}".format(
self.transformation_matrix.size(0)))
flat_tensor = tensor.view(1, -1) - self.mean_vector
transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
tensor = transformed_tensor.view(tensor.size())
return tensor
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def forward(self, query_embed, in_memory_embed, atten_mask=None):
if self.atten_type == 'simple': # simple attention
attention = torch.bmm(in_memory_embed, query_embed.unsqueeze(2)).squeeze(2)
elif self.atten_type == 'mul': # multiplicative attention
attention = torch.bmm(in_memory_embed, torch.mm(query_embed, self.W).unsqueeze(2)).squeeze(2)
elif self.atten_type == 'add': # additive attention
attention = torch.tanh(torch.mm(in_memory_embed.view(-1, in_memory_embed.size(-1)), self.W2)\
.view(in_memory_embed.size(0), -1, self.W2.size(-1)) \
+ torch.mm(query_embed, self.W).unsqueeze(1))
attention = torch.mm(attention.view(-1, attention.size(-1)), self.W3).view(attention.size(0), -1)
else:
raise RuntimeError('Unknown atten_type: {}'.format(self.atten_type))
if atten_mask is not None:
# Exclude masked elements from the softmax
attention = atten_mask * attention - (1 - atten_mask) * INF
return attention
示例7: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def forward(self, input_set):
"""
Args:
input_set: shape N X D
Returns:
output_vec: shape 1 X 2D
"""
num_element = input_set.shape[0]
element_dim = input_set.shape[1]
assert element_dim == self.element_dim
hidden = torch.zeros(1, 2 * self.element_dim).to(input_set.device)
memory = torch.zeros(1, self.element_dim).to(input_set.device)
for tt in range(self.num_step_encoder):
hidden, memory = self.LSTM(hidden, memory)
energy = torch.tanh(torch.mm(hidden, self.W_1) + input_set).mm(self.W_2)
att_weight = F.softmax(energy, dim=0)
read = (input_set * att_weight).sum(dim=0, keepdim=True)
hidden = torch.cat([hidden, read], dim=1)
return hidden
示例8: pairwise_distance
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def pairwise_distance(features, query=None, gallery=None, metric=None):
if query is None and gallery is None:
n = len(features)
x = torch.cat(list(features.values()))
x = x.view(n, -1)
if metric is not None:
x = metric.transform(x)
dist = torch.pow(x, 2).sum(dim=1, keepdim=True) * 2
dist = dist.expand(n, n) - 2 * torch.mm(x, x.t())
return dist
x = torch.cat([features["".join(f)].unsqueeze(0) for f, _, _, _ in query], 0)
y = torch.cat([features["".join(f)].unsqueeze(0) for f, _, _, _ in gallery], 0)
m, n = x.size(0), y.size(0)
x = x.view(m, -1)
y = y.view(n, -1)
if metric is not None:
x = metric.transform(x)
y = metric.transform(y)
dist = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n, m).t()
dist.addmm_(1, -2, x, y.t())
return dist
示例9: calculate_regression_loss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def calculate_regression_loss(self, z, target):
"""
Calculating the regression loss for all pairs of nodes.
:param z: Hidden vertex representations.
:param target: Target vector.
:return loss_term: Regression loss.
:return predictions_soft: Predictions for each vertex pair.
"""
pos = torch.cat((self.positive_z_i, self.positive_z_j), 1)
neg = torch.cat((self.negative_z_i, self.negative_z_j), 1)
surr_neg_i = torch.cat((self.negative_z_i, self.negative_z_k), 1)
surr_neg_j = torch.cat((self.negative_z_j, self.negative_z_k), 1)
surr_pos_i = torch.cat((self.positive_z_i, self.positive_z_k), 1)
surr_pos_j = torch.cat((self.positive_z_j, self.positive_z_k), 1)
features = torch.cat((pos, neg, surr_neg_i, surr_neg_j, surr_pos_i, surr_pos_j))
predictions = torch.mm(features, self.regression_weights)
predictions_soft = F.log_softmax(predictions, dim=1)
loss_term = F.nll_loss(predictions_soft, target)
return loss_term, predictions_soft
示例10: score_model
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def score_model(self, epoch):
"""
Score the model on the test set edges in each epoch.
:param epoch: Epoch number.
"""
loss, self.train_z = self.model(self.positive_edges, self.negative_edges, self.y)
score_positive_edges = torch.from_numpy(np.array(self.test_positive_edges, dtype=np.int64).T).type(torch.long).to(self.device)
score_negative_edges = torch.from_numpy(np.array(self.test_negative_edges, dtype=np.int64).T).type(torch.long).to(self.device)
test_positive_z = torch.cat((self.train_z[score_positive_edges[0, :], :], self.train_z[score_positive_edges[1, :], :]), 1)
test_negative_z = torch.cat((self.train_z[score_negative_edges[0, :], :], self.train_z[score_negative_edges[1, :], :]), 1)
scores = torch.mm(torch.cat((test_positive_z, test_negative_z), 0), self.model.regression_weights.to(self.device))
probability_scores = torch.exp(F.softmax(scores, dim=1))
predictions = probability_scores[:, 0]/probability_scores[:, 0:2].sum(1)
predictions = predictions.cpu().detach().numpy()
targets = [0]*len(self.test_positive_edges) + [1]*len(self.test_negative_edges)
auc, f1 = calculate_auc(targets, predictions, self.edges)
self.logs["performance"].append([epoch+1, auc, f1])
示例11: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def __init__(self, input1_size, input2_size, output_size):
"""
使用版本
:param input1_size:
:param input2_size:
:param output_size:双仿的分类空间
"""
super().__init__()
# 为什么+1:
# 双仿变换的矩阵形式:
# [(batch_size*seq_len),(head_feat_size+1)] * [(head_feat_size+1),((dep_feat_size+1))*output_size]
# mm-> [(batch_size*seq_len),((dep_feat_size+1))*output_size]
# [(batch_size*seq_len),((dep_feat_size+1))*output_size]
# view-> [batch_size, (seq_len*output_size), (dep_feat_size+1)]
# [batch_size, (seq_len*output_size), (dep_feat_size+1)] * [batch_size, (dep_feat_size+1), seq_len]
# bmm-> [batch_size, (seq_len*output_size), seq_len]
# [batch_size, (seq_len*output_size), seq_len]
# view-> [batch_size, seq_len, seq_len, output_size]
self.W_bilin = PairwiseBilinear(input1_size + 1, input2_size + 1, output_size)
self.W_bilin.weight.data.zero_()
self.W_bilin.bias.data.zero_()
示例12: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def forward(self, input, adj):
h = torch.mm(input, self.W)
N = h.size()[0]
f_1 = torch.matmul(h, self.a1)
f_2 = torch.matmul(h, self.a2)
e = self.leakyrelu(f_1 + f_2.transpose(0,1))
zero_vec = -9e15*torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
if self.concat:
return F.elu(h_prime)
else:
return h_prime
示例13: _power_iteration
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def _power_iteration(self, A, num_simulations=30):
# Ideally choose a random vector
# To decrease the chance that our vector
# Is orthogonal to the eigenvector
b_k = torch.rand(A.shape[1]).unsqueeze(dim=1) * 0.5 - 1
for _ in range(num_simulations):
# calculate the matrix-by-vector product Ab
b_k1 = torch.mm(A, b_k)
# calculate the norm
b_k1_norm = torch.norm(b_k1)
# re normalize the vector
b_k = b_k1 / b_k1_norm
return b_k
示例14: _vertex_decimation
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def _vertex_decimation(self, L):
max_eigenvec = self._power_iteration(L)
v_plus, v_minus = (max_eigenvec >= 0).squeeze(), (max_eigenvec < 0).squeeze()
# print(v_plus, v_minus)
# diagonal matrix, swap v_minus with v_plus not to incur in errors (does not change the matrix)
if torch.sum(v_plus) == 0.: # The matrix is diagonal, cannot reduce further
if torch.sum(v_minus) == 0.:
assert v_minus.shape[0] == L.shape[0], (v_minus.shape, L.shape)
# I assumed v_minus should have ones, but this is not necessarily the case. So I added this if
return torch.ones(v_minus.shape), L
else:
return v_minus, L
L_plus_plus = L[v_plus][:, v_plus]
L_plus_minus = L[v_plus][:, v_minus]
L_minus_minus = L[v_minus][:, v_minus]
L_minus_plus = L[v_minus][:, v_plus]
L_new = L_plus_plus - torch.mm(torch.mm(L_plus_minus, torch.inverse(L_minus_minus)), L_minus_plus)
return v_plus, L_new
示例15: regularizer_orth2
# 需要导入模块: import torch [as 别名]
# 或者: from torch import mm [as 别名]
def regularizer_orth2(m):
"""
# ----------------------------------------
# Applies regularization to the training by performing the
# orthogonalization technique described in the paper
# This function is to be called by the torch.nn.Module.apply() method,
# which applies svd_orthogonalization() to every layer of the model.
# usage: net.apply(regularizer_orth2)
# ----------------------------------------
"""
classname = m.__class__.__name__
if classname.find('Conv') != -1:
w = m.weight.data.clone()
c_out, c_in, f1, f2 = w.size()
# dtype = m.weight.data.type()
w = w.permute(2, 3, 1, 0).contiguous().view(f1*f2*c_in, c_out)
u, s, v = torch.svd(w)
s_mean = s.mean()
s[s > 1.5*s_mean] = s[s > 1.5*s_mean] - 1e-4
s[s < 0.5*s_mean] = s[s < 0.5*s_mean] + 1e-4
w = torch.mm(torch.mm(u, torch.diag(s)), v.t())
m.weight.data = w.view(f1, f2, c_in, c_out).permute(3, 2, 0, 1) # .type(dtype)
else:
pass