当前位置: 首页>>代码示例>>Python>>正文


Python torch.manual_seed方法代码示例

本文整理汇总了Python中torch.manual_seed方法的典型用法代码示例。如果您正苦于以下问题:Python torch.manual_seed方法的具体用法?Python torch.manual_seed怎么用?Python torch.manual_seed使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch的用法示例。


在下文中一共展示了torch.manual_seed方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: set_random_seed

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def set_random_seed(seed, deterministic=False):
    """Set random seed.

    Args:
        seed (int): Seed to be used.
        deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:19,代码来源:train.py

示例2: construct_graph

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def construct_graph(self):
    # Set the random seed
    torch.manual_seed(cfg.RNG_SEED)
    # Build the main computation graph
    self.net.create_architecture(self.imdb.num_classes, tag='default')
    # Define the loss
    # loss = layers['total_loss']
    # Set learning rate and momentum
    lr = cfg.TRAIN.LEARNING_RATE
    params = []
    for key, value in dict(self.net.named_parameters()).items():
      if value.requires_grad:
        if 'bias' in key:
          params += [{'params':[value],'lr':lr*(cfg.TRAIN.DOUBLE_BIAS + 1), 'weight_decay': cfg.TRAIN.BIAS_DECAY and cfg.TRAIN.WEIGHT_DECAY or 0}]
        else:
          params += [{'params':[value],'lr':lr, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY}]
    self.optimizer = torch.optim.SGD(params, momentum=cfg.TRAIN.MOMENTUM)
    # Write the train and validation information to tensorboard
    self.writer = tb.writer.FileWriter(self.tbdir)
   # self.valwriter = tb.writer.FileWriter(self.tbvaldir)

    return lr, self.optimizer 
开发者ID:Sunarker,项目名称:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代码行数:24,代码来源:train_val.py

示例3: init

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def init(args):
    # init logger
    log_format = '%(asctime)-10s: %(message)s'
    if args.log_file is not None and args.log_file != "":
        Path(args.log_file).parent.mkdir(parents=True, exist_ok=True)
        logging.basicConfig(level=logging.INFO, filename=args.log_file, filemode='w', format=log_format)
        logging.warning(f'This will get logged to file: {args.log_file}')
    else:
        logging.basicConfig(level=logging.INFO, format=log_format)

    # create output dir
    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
    assert 'bert' in args.output_dir.name, \
        '''Output dir name has to contain `bert` or `roberta` for AutoModel.from_pretrained to correctly infer the model type'''

    args.output_dir.mkdir(parents=True, exist_ok=True)

    # set random seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed) 
开发者ID:allenai,项目名称:tpu_pretrain,代码行数:24,代码来源:utils.py

示例4: load_checkpoint

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def load_checkpoint(self, file_name):
        filename = self.config.checkpoint_dir + file_name
        try:
            self.logger.info("Loading checkpoint '{}'".format(filename))
            checkpoint = torch.load(filename)

            self.current_epoch = checkpoint['epoch']
            self.current_iteration = checkpoint['iteration']
            self.netG.load_state_dict(checkpoint['G_state_dict'])
            self.optimG.load_state_dict(checkpoint['G_optimizer'])
            self.netD.load_state_dict(checkpoint['D_state_dict'])
            self.optimD.load_state_dict(checkpoint['D_optimizer'])
            self.fixed_noise = checkpoint['fixed_noise']
            self.manual_seed = checkpoint['manual_seed']

            self.logger.info("Checkpoint loaded successfully from '{}' at (epoch {}) at (iteration {})\n"
                  .format(self.config.checkpoint_dir, checkpoint['epoch'], checkpoint['iteration']))
        except OSError as e:
            self.logger.info("No checkpoint exists from '{}'. Skipping...".format(self.config.checkpoint_dir))
            self.logger.info("**First time to train**") 
开发者ID:moemen95,项目名称:Pytorch-Project-Template,代码行数:22,代码来源:dcgan.py

示例5: main

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def main():
    args = Parameters().parse()
    np.random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed_all(args.random_seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.enabled = True
    # Dataset
    datasets = create_datasets(args)
    # Network
    net = create_network(args)
    # Loss Function
    criterion = create_lossfunc(args, net)
    # optimizer and parameters
    optim_params = create_params(args, net)
    optimizer = create_optimizer(args, optim_params)
    # learning rate scheduler
    scheduler = create_scheduler(args, optimizer, datasets)
    if args.mode == 'train':
        train(args, net, datasets, criterion, optimizer, scheduler)
        return
    if args.mode == 'test':
        test(args, net, datasets)
        return 
开发者ID:miraiaroha,项目名称:ACAN,代码行数:27,代码来源:depthest_main.py

示例6: __init__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def __init__(self, thresh=1e-8, projDim=8192, input_dim=512):
         super(CBP, self).__init__()
         self.thresh = thresh
         self.projDim = projDim
         self.input_dim = input_dim
         self.output_dim = projDim
         torch.manual_seed(1)
         self.h_ = [
                 torch.randint(0, self.output_dim, (self.input_dim,),dtype=torch.long),
                 torch.randint(0, self.output_dim, (self.input_dim,),dtype=torch.long)
         ]
         self.weights_ = [
             (2 * torch.randint(0, 2, (self.input_dim,)) - 1).float(),
             (2 * torch.randint(0, 2, (self.input_dim,)) - 1).float()
         ]

         indices1 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1, -1),
                               self.h_[0].reshape(1, -1)), dim=0)
         indices2 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1, -1),
                               self.h_[1].reshape(1, -1)), dim=0)

         self.sparseM = [
             torch.sparse.FloatTensor(indices1, self.weights_[0], torch.Size([self.input_dim, self.output_dim])).to_dense(),
             torch.sparse.FloatTensor(indices2, self.weights_[1], torch.Size([self.input_dim, self.output_dim])).to_dense(),
         ] 
开发者ID:jiangtaoxie,项目名称:fast-MPN-COV,代码行数:27,代码来源:CBP.py

示例7: __init__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def __init__(self, 
                 archive_file=DEFAULT_ARCHIVE_FILE, 
                 model_file=None):
        SysPolicy.__init__(self)
        
        if not os.path.isfile(archive_file):
            if not model_file:
                raise Exception("No model for Sequicity is specified!")
            archive_file = cached_path(model_file)
        model_dir = os.path.dirname(os.path.abspath(__file__))
        if not os.path.exists(os.path.join(model_dir, 'data')):
            archive = zipfile.ZipFile(archive_file, 'r')
            archive.extractall(model_dir)
        
        cfg.init_handler('tsdf-multiwoz')
        
        torch.manual_seed(cfg.seed)
        torch.cuda.manual_seed(cfg.seed)
        random.seed(cfg.seed)
        np.random.seed(cfg.seed)
        self.m = Model('multiwoz')
        self.m.count_params()
        self.m.load_model()
        self.reset() 
开发者ID:ConvLab,项目名称:ConvLab,代码行数:26,代码来源:Sequicity.py

示例8: main

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    hvd.init()
    local_rank = hvd.local_rank()
    torch.cuda.set_device(local_rank)

    main_worker(local_rank, 4, args) 
开发者ID:tczhangzhi,项目名称:pytorch-distributed,代码行数:20,代码来源:horovod_distributed.py

示例9: main

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        # torch.backends.cudnn.enabled = False
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    args.local_rank = int(os.environ["SLURM_PROCID"])
    args.world_size = int(os.environ["SLURM_NPROCS"])
    ngpus_per_node = torch.cuda.device_count()

    job_id = os.environ["SLURM_JOBID"]
    args.dist_url = "file://{}.{}".format(os.path.realpath(args.dist_file), job_id)
    mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) 
开发者ID:tczhangzhi,项目名称:pytorch-distributed,代码行数:23,代码来源:distributed_slurm_main.py

示例10: reset_parameters

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def reset_parameters(self,
                         init_shared=lambda x: normal(x, std=0.1),
                         init_importance=lambda x: normal(x, std=0.0005)):
        """Resets the trainable parameters."""
        def set_constant_row(parameters, iRow=0, value=0):
            """Return `parameters` with row `iRow` as s constant `value`."""
            data = parameters.data
            data[iRow, :] = value
            return torch.nn.Parameter(data, requires_grad=parameters.requires_grad)

        np.random.seed(self.seed)
        if self.seed is not None:
            torch.manual_seed(self.seed)

        self.shared_embeddings.weight = init_shared(self.shared_embeddings.weight)
        self.importance_weights.weight = init_importance(self.importance_weights.weight)

        if self.padding_idx is not None:
            # Unfortunately has to set weight to 0 even when paddingIdx = 0
            self.shared_embeddings.weight = set_constant_row(self.shared_embeddings.weight)
            self.importance_weights.weight = set_constant_row(self.importance_weights.weight)

        self.shared_embeddings.weight.requires_grad = self.train_sharedEmbed
        self.importance_weights.weight.requires_grad = self.train_weight 
开发者ID:YannDubs,项目名称:Hash-Embeddings,代码行数:26,代码来源:embedding.py

示例11: eval_on_test

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def eval_on_test(batch_size, num_workers, seed, _log):
    torch.manual_seed(seed)
    np.random.seed(seed)

    device = set_device()
    test_dataset, (c, h, w) = get_test_data()
    _log.info('Test dataset size: {}'.format(len(test_dataset)))
    _log.info('Image dimensions: {}x{}x{}'.format(c, h, w))

    flow = create_flow(c, h, w).to(device)

    flow.eval()

    def log_prob_fn(batch):
        return flow.log_prob(batch.to(device))

    test_loader=DataLoader(dataset=test_dataset,
                           batch_size=batch_size,
                           num_workers=num_workers)
    test_loader = tqdm(test_loader)

    mean, err = autils.eval_log_density_2(log_prob_fn=log_prob_fn,
                                          data_loader=test_loader,
                                          c=c, h=h, w=w)
    print('Test log probability (bits/dim): {:.2f} +/- {:.4f}'.format(mean, err)) 
开发者ID:bayesiains,项目名称:nsf,代码行数:27,代码来源:images.py

示例12: sample

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def sample(seed, num_bits, num_samples, samples_per_row, _log, output_path=None):
    torch.set_grad_enabled(False)

    if output_path is None:
        output_path = 'samples.png'

    torch.manual_seed(seed)
    np.random.seed(seed)

    device = set_device()

    _, _, (c, h, w) = get_train_valid_data()

    flow = create_flow(c, h, w).to(device)
    flow.eval()

    preprocess = Preprocess(num_bits)

    samples = flow.sample(num_samples)
    samples = preprocess.inverse(samples)

    save_image(samples.cpu(), output_path,
               nrow=samples_per_row,
               padding=0) 
开发者ID:bayesiains,项目名称:nsf,代码行数:26,代码来源:images.py

示例13: main

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def main(seed, _log):
    torch.manual_seed(seed)
    np.random.seed(seed)

    device = set_device()

    train_dataset, val_dataset, (c, h, w) = get_train_valid_data()

    _log.info('Training dataset size: {}'.format(len(train_dataset)))

    if val_dataset is None:
        _log.info('No validation dataset')
    else:
        _log.info('Validation dataset size: {}'.format(len(val_dataset)))

    _log.info('Image dimensions: {}x{}x{}'.format(c, h, w))

    flow = create_flow(c, h, w)

    train_flow(flow, train_dataset, val_dataset, (c, h, w), device) 
开发者ID:bayesiains,项目名称:nsf,代码行数:22,代码来源:images.py

示例14: test_adam_lorentz

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def test_adam_lorentz(params):
    lorentz = geoopt.manifolds.Lorentz(k=torch.Tensor([1.0]))
    torch.manual_seed(42)
    with torch.no_grad():
        X = geoopt.ManifoldParameter(torch.randn(20, 10), manifold=lorentz).proj_()
    Xstar = torch.randn(20, 10)
    Xstar.set_(lorentz.projx(Xstar))

    def closure():
        optim.zero_grad()
        loss = (Xstar - X).pow(2).sum()
        loss.backward()
        return loss.item()

    optim = geoopt.optim.RiemannianAdam([X], stabilize=4500, **params)
    for _ in range(10000):
        if (Xstar - X).norm() < 1e-5:
            break
        optim.step(closure)
    assert X.is_contiguous()
    np.testing.assert_allclose(X.data, Xstar, atol=1e-5, rtol=1e-5)
    optim.load_state_dict(optim.state_dict())
    optim.step(closure) 
开发者ID:geoopt,项目名称:geoopt,代码行数:25,代码来源:test_adam.py

示例15: test_adam_poincare

# 需要导入模块: import torch [as 别名]
# 或者: from torch import manual_seed [as 别名]
def test_adam_poincare():
    torch.manual_seed(44)
    manifold = geoopt.PoincareBall()
    ideal = torch.tensor([0.5, 0.5])
    start = torch.randn(2) / 2
    start = manifold.expmap0(start)
    start = geoopt.ManifoldParameter(start, manifold=manifold)

    def closure():
        optim.zero_grad()
        loss = manifold.dist(start, ideal) ** 2
        loss.backward()
        return loss.item()

    optim = geoopt.optim.RiemannianAdam([start], lr=1e-2)

    for _ in range(2000):
        optim.step(closure)
    np.testing.assert_allclose(start.data, ideal, atol=1e-5, rtol=1e-5) 
开发者ID:geoopt,项目名称:geoopt,代码行数:21,代码来源:test_adam.py


注:本文中的torch.manual_seed方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。