本文整理汇总了Python中torch.log10方法的典型用法代码示例。如果您正苦于以下问题:Python torch.log10方法的具体用法?Python torch.log10怎么用?Python torch.log10使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.log10方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _fade_in
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def _fade_in(self, waveform_length: int) -> Tensor:
fade = torch.linspace(0, 1, self.fade_in_len)
ones = torch.ones(waveform_length - self.fade_in_len)
if self.fade_shape == "linear":
fade = fade
if self.fade_shape == "exponential":
fade = torch.pow(2, (fade - 1)) * fade
if self.fade_shape == "logarithmic":
fade = torch.log10(.1 + fade) + 1
if self.fade_shape == "quarter_sine":
fade = torch.sin(fade * math.pi / 2)
if self.fade_shape == "half_sine":
fade = torch.sin(fade * math.pi - math.pi / 2) / 2 + 0.5
return torch.cat((fade, ones)).clamp_(0, 1)
示例2: _fade_out
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def _fade_out(self, waveform_length: int) -> Tensor:
fade = torch.linspace(0, 1, self.fade_out_len)
ones = torch.ones(waveform_length - self.fade_out_len)
if self.fade_shape == "linear":
fade = - fade + 1
if self.fade_shape == "exponential":
fade = torch.pow(2, - fade) * (1 - fade)
if self.fade_shape == "logarithmic":
fade = torch.log10(1.1 - fade) + 1
if self.fade_shape == "quarter_sine":
fade = torch.sin(fade * math.pi / 2 + math.pi / 2)
if self.fade_shape == "half_sine":
fade = torch.sin(fade * math.pi + math.pi / 2) / 2 + 0.5
return torch.cat((ones, fade)).clamp_(0, 1)
示例3: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def forward(self, waveform: Tensor) -> Tensor:
r"""
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
Returns:
Tensor: Tensor of audio of dimension (..., time).
"""
if self.gain_type == "amplitude":
waveform = waveform * self.gain
if self.gain_type == "db":
waveform = F.gain(waveform, self.gain)
if self.gain_type == "power":
waveform = F.gain(waveform, 10 * math.log10(self.gain))
return torch.clamp(waveform, -1, 1)
示例4: _validate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def _validate(self, validate, metrics):
"""Validation process"""
for cover, _ in tqdm(validate, disable=not self.verbose):
gc.collect()
cover = cover.to(self.device)
generated, payload, decoded = self._encode_decode(cover, quantize=True)
encoder_mse, decoder_loss, decoder_acc = self._coding_scores(
cover, generated, payload, decoded)
generated_score = self._critic(generated)
cover_score = self._critic(cover)
metrics['val.encoder_mse'].append(encoder_mse.item())
metrics['val.decoder_loss'].append(decoder_loss.item())
metrics['val.decoder_acc'].append(decoder_acc.item())
metrics['val.cover_score'].append(cover_score.item())
metrics['val.generated_score'].append(generated_score.item())
metrics['val.ssim'].append(ssim(cover, generated).item())
metrics['val.psnr'].append(10 * torch.log10(4 / encoder_mse).item())
metrics['val.bpp'].append(self.data_depth * (2 * decoder_acc.item() - 1))
示例5: synthesize
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def synthesize(self, mgc, batch_size, temperature=1.0):
mel = mgc
mel = torch.autograd.Variable(torch.tensor(mel).cuda().float()).transpose(0, 1)
mel = torch.unsqueeze(mel, 0)
mel = torch.log10(mel) * 20
# from ipdb import set_trace
# set_trace()
with torch.no_grad():
audio = self.waveglow.infer(mel, sigma=temperature)
audio = audio * 32768
audio = audio.squeeze()
audio = audio.cpu().numpy()
from scipy import signal
audio = signal.lfilter([1.0], [1.0, -0.97], audio)
audio = audio.astype('int16')
return audio
示例6: log10
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def log10(x, out=None):
"""
log base 10, element-wise.
Parameters
----------
x : ht.DNDarray
The value for which to compute the logarithm.
out : ht.DNDarray or None, optional
A location in which to store the results. If provided, it must have a broadcastable shape. If not provided
or set to None, a fresh tensor is allocated.
Returns
-------
logarithms : ht.DNDarray
A tensor of the same shape as x, containing the positive logarithms of each element in this tensor.
Negative input elements are returned as nan. If out was provided, logarithms is a reference to it.
Examples
--------
>>> ht.log10(ht.arange(5))
tensor([ -inf, 0.0000, 0.3010, 0.4771, 0.6021])
"""
return operations.__local_op(torch.log10, x, out)
示例7: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Stft: time -> time-freq
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# NOTE(kamo): We use different definition for log-spec between TTS and ASR
# TTS: log_10(abs(stft))
# ASR: log_e(power(stft))
# STFT -> Power spectrum
# input_stft: (..., F, 2) -> (..., F)
input_power = input_stft[..., 0] ** 2 + input_stft[..., 1] ** 2
log_amp = 0.5 * torch.log10(torch.clamp(input_power, min=1.0e-10))
return log_amp, feats_lens
示例8: make_vec_eps
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def make_vec_eps(self, global_B, env_ranks):
"""Construct log-spaced epsilon values and select local assignments
from the global number of sampler environment instances (for SyncRl
and AsyncRl)."""
if (self.eps_final_min is not None and
self.eps_final_min != self._eps_final_scalar): # vector epsilon.
if self.alternating: # In FF case, sampler sets agent.alternating.
assert global_B % 2 == 0
global_B = global_B // 2 # Env pairs will share epsilon.
env_ranks = list(set([i // 2 for i in env_ranks]))
self.eps_init = self._eps_init_scalar * torch.ones(len(env_ranks))
global_eps_final = torch.logspace(
torch.log10(torch.tensor(self.eps_final_min)),
torch.log10(torch.tensor(self._eps_final_scalar)),
global_B)
self.eps_final = global_eps_final[env_ranks]
self.eps_sample = self.eps_init
示例9: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def forward(self, audio):
p = (self.n_fft - self.hop_length) // 2
audio = F.pad(audio, (p, p), "reflect").squeeze(1)
fft = torch.stft(
audio,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=False,
)
real_part, imag_part = fft.unbind(-1)
magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2)
mel_output = torch.matmul(self.mel_basis, magnitude)
log_mel_spec = torch.log10(torch.clamp(mel_output, min=1e-5))
return log_mel_spec
示例10: compute_yloss
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def compute_yloss(self):
"""Computes the first part (y-loss) of the loss function."""
yloss = 0.0
for i in range(self.total_CFs):
if self.yloss_type == "l2_loss":
temp_loss = torch.pow((self.get_model_output(self.cfs[i]) - self.target_cf_class), 2)[0]
elif self.yloss_type == "log_loss":
temp_logits = torch.log10((abs(self.get_model_output(self.cfs[i]) - 0.000001))/(1 - abs(self.get_model_output(self.cfs[i]) - 0.000001)))
criterion = torch.nn.BCEWithLogitsLoss()
temp_loss = criterion(temp_logits, torch.tensor([self.target_cf_class]))
elif self.yloss_type == "hinge_loss":
temp_logits = torch.log10((abs(self.get_model_output(self.cfs[i]) - 0.000001))/(1 - abs(self.get_model_output(self.cfs[i]) - 0.000001)))
criterion = torch.nn.ReLU()
temp_loss = criterion(0.5 - (temp_logits*self.target_cf_class))[0]
yloss += temp_loss
return yloss/self.total_CFs
示例11: sisnr
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def sisnr(self, x, s, eps=1e-8):
"""
Arguments:
x: separated signal, N x S tensor
s: reference signal, N x S tensor
Return:
sisnr: N tensor
"""
def l2norm(mat, keepdim=False):
return th.norm(mat, dim=-1, keepdim=keepdim)
if x.shape != s.shape:
raise RuntimeError(
"Dimention mismatch when calculate si-snr, {} vs {}".format(
x.shape, s.shape))
x_zm = x - th.mean(x, dim=-1, keepdim=True)
s_zm = s - th.mean(s, dim=-1, keepdim=True)
t = th.sum(
x_zm * s_zm, dim=-1,
keepdim=True) * s_zm / (l2norm(s_zm, keepdim=True)**2 + eps)
return 20 * th.log10(eps + l2norm(t) / (l2norm(x_zm - t) + eps))
示例12: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def forward(self, data, coords):
# in_ = coords.contiguous()
in_ = th.cat([th.log10(1.0 + data/255.0), coords], 2).contiguous()
assert in_.shape[0] == 1, "current implementation assumes batch_size = 1"
kernels = self.net(in_.squeeze(0))
cdata = crop_like(data.squeeze(0), kernels).contiguous()
output, _ = self.kernel_update(cdata, kernels)
# Average over samples
output = th.unsqueeze(output, 0).mean(1)
# crop output
k = (self.ksize-1) // 2
output = output[..., k:-k, k:-k]
kviz = kernels.detach().clone()
min_ = kviz.min()
max_ = kviz.max()
kviz = (kviz - min_) / (max_ - min_ - 1e-8)
bs, k2, h, w = kviz.shape
return output, kviz.view(bs, self.ksize, self.ksize, h, w)
示例13: calc_psnr
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def calc_psnr(sr, hr, scale=0, benchmark=False):
# adapt from EDSR: https://github.com/thstkdgus35/EDSR-PyTorch
diff = (sr - hr).data
if benchmark:
shave = scale
if diff.size(1) > 1:
convert = diff.new(1, 3, 1, 1)
convert[0, 0, 0, 0] = 65.738
convert[0, 1, 0, 0] = 129.057
convert[0, 2, 0, 0] = 25.064
diff.mul_(convert).div_(256)
diff = diff.sum(dim=1, keepdim=True)
else:
shave = scale + 6
valid = diff[:, :, shave:-shave, shave:-shave]
mse = valid.pow(2).mean()
return -10 * math.log10(mse)
# +++++++++++++++++++++++++++++++++++++
# PSNR
# -------------------------------------
示例14: SI_SNR
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def SI_SNR(_s, s, zero_mean=True):
'''
Calculate the SNR indicator between the two audios.
The larger the value, the better the separation.
input:
_s: Generated audio
s: Ground Truth audio
output:
SNR value
'''
if zero_mean:
_s = _s - torch.mean(_s)
s = s - torch.mean(s)
s_target = sum(torch.mul(_s, s))*s/torch.pow(torch.norm(s, p=2), 2)
e_noise = _s - s_target
return 20*torch.log10(torch.norm(s_target, p=2)/torch.norm(e_noise, p=2))
示例15: sisnr
# 需要导入模块: import torch [as 别名]
# 或者: from torch import log10 [as 别名]
def sisnr(x, s, eps=1e-8):
"""
calculate training loss
input:
x: separated signal, N x S tensor
s: reference signal, N x S tensor
Return:
sisnr: N tensor
"""
def l2norm(mat, keepdim=False):
return torch.norm(mat, dim=-1, keepdim=keepdim)
if x.shape != s.shape:
raise RuntimeError(
"Dimention mismatch when calculate si-snr, {} vs {}".format(
x.shape, s.shape))
x_zm = x - torch.mean(x, dim=-1, keepdim=True)
s_zm = s - torch.mean(s, dim=-1, keepdim=True)
t = torch.sum(
x_zm * s_zm, dim=-1,
keepdim=True) * s_zm / (l2norm(s_zm, keepdim=True)**2 + eps)
return 20 * torch.log10(eps + l2norm(t) / (l2norm(x_zm - t) + eps))