本文整理汇总了Python中torch.kthvalue方法的典型用法代码示例。如果您正苦于以下问题:Python torch.kthvalue方法的具体用法?Python torch.kthvalue怎么用?Python torch.kthvalue使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.kthvalue方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _bbox_forward_train
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels,
img_metas):
num_imgs = len(img_metas)
rois = bbox2roi([res.bboxes for res in sampling_results])
bbox_results = self._bbox_forward(x, rois)
bbox_targets = self.bbox_head.get_targets(sampling_results, gt_bboxes,
gt_labels, self.train_cfg)
# record the `beta_topk`-th smallest target
# `bbox_targets[2]` and `bbox_targets[3]` stand for bbox_targets
# and bbox_weights, respectively
pos_inds = bbox_targets[3][:, 0].nonzero().squeeze(1)
num_pos = len(pos_inds)
cur_target = bbox_targets[2][pos_inds, :2].abs().mean(dim=1)
beta_topk = min(self.train_cfg.dynamic_rcnn.beta_topk * num_imgs,
num_pos)
cur_target = torch.kthvalue(cur_target, beta_topk)[0].item()
self.beta_history.append(cur_target)
loss_bbox = self.bbox_head.loss(bbox_results['cls_score'],
bbox_results['bbox_pred'], rois,
*bbox_targets)
bbox_results.update(loss_bbox=loss_bbox)
return bbox_results
示例2: select_over_all_levels
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def select_over_all_levels(self, boxlists):
num_images = len(boxlists)
results = []
for i in range(num_images):
# multiclass nms
result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.fpn_post_nms_top_n > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(),
number_of_detections - self.fpn_post_nms_top_n + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
results.append(result)
return results
示例3: compute_image
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def compute_image(self, x):
grad_img = x.grad.abs().sum(1, keepdim=True)
b, c, h, w = grad_img.shape
gi_flat = grad_img.view(b, c, -1)
cl = torch.kthvalue(gi_flat, int(grad_img[0].numel() * 0.99),
dim=-1)[0]
cl = cl.unsqueeze(-1).unsqueeze(-1)
grad_img = torch.min(grad_img, cl) / cl
x = x.detach()
xm = x.min()
xM = x.max()
x = (x - xm) / (xM - xm)
img = x * grad_img + 0.5 * (1 - grad_img)
return img
示例4: _pvalue
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def _pvalue(data: torch.Tensor, ratio: float = 0.25, **kwargs):
"""
Finds the P-(ratio* 100)'s value in the tensor, equivalent
to the kth largest element where k = ratio * len(data)
"""
cut = max(1, int(data.numel() * (1 - ratio)))
return torch.kthvalue(data, cut)[0].item()
示例5: binarize_mask
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def binarize_mask(mask):
with torch.no_grad():
avg = F.avg_pool2d(mask, 224, stride=1).squeeze()
flat_mask = mask.cpu().view(mask.size(0), -1)
binarized_mask = torch.zeros_like(flat_mask)
for i in range(mask.size(0)):
kth = 1 + int((flat_mask[i].size(0) - 1) * (1 - avg[i].item()) + 0.5)
th, _ = torch.kthvalue(flat_mask[i], kth)
th.clamp_(1e-6, 1 - 1e-6)
binarized_mask[i] = flat_mask[i].gt(th).float()
binarized_mask = binarized_mask.view(mask.size())
return binarized_mask
示例6: __call__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def __call__(self, images, *targets_list):
import matplotlib.pyplot as plt
import seaborn as sbn
if (self.counter + 1) % self.show_iter != 0:
self.counter += 1
return
self.counter += 1
colors = sbn.color_palette(n_colors=len(targets_list))
img = images.tensors[0].permute((1, 2, 0)).cpu().numpy() + self.image_mean
img = img[:, :, [2, 1, 0]]
plt.imshow(img/255)
title = "boxes:"
for ci, targets in enumerate(targets_list):
if targets is not None:
bboxes = targets[0].bbox.detach().cpu().numpy().tolist()
scores = targets[0].extra_fields['scores'].detach().cpu() if 'scores' in targets[0].extra_fields else None
locations = targets[0].extra_fields['det_locations'].detach().cpu() if 'det_locations' in targets[0].extra_fields else None
labels = targets[0].extra_fields['labels'].cpu()
if scores is None or len(scores) == 0:
self.plot1(bboxes, scores, locations, labels, None, (1, 0, 0)) # ground-truth
else:
score_th = -torch.kthvalue(-scores, self.show_score_topk)[0]\
if self.score_th is None else self.score_th
self.plot(bboxes, scores, locations, labels, score_th, colors[ci])
count = len(targets[0].bbox) if scores is None else (scores > score_th).sum()
title += "{}({}) ".format(count, len(targets[0].bbox))
plt.title(title)
plt.show()
input()
示例7: __call__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def __call__(self, images, *targets_list):
import matplotlib.pyplot as plt
import seaborn as sbn
if (self.counter + 1) % self.show_iter != 0:
self.counter += 1
return
self.counter += 1
colors = sbn.color_palette(n_colors=len(targets_list))
img = images.tensors[0].permute((1, 2, 0)).cpu().numpy() + self.image_mean
img = img[:, :, [2, 1, 0]]
plt.imshow(img/255)
title = "boxes:"
for ci, targets in enumerate(targets_list):
if targets is not None:
bboxes = targets[0].bbox.cpu().numpy().tolist()
scores = targets[0].extra_fields['scores'].cpu() if 'scores' in targets[0].extra_fields else None
locations = targets[0].extra_fields['det_locations'].cpu() if 'det_locations' in targets[0].extra_fields else None
labels = targets[0].extra_fields['labels'].cpu()
if scores is None:
self.plot1(bboxes, scores, locations, labels, None, (1, 0, 0)) # ground-truth
else:
score_th = -torch.kthvalue(-scores, self.show_score_topk)[0]\
if self.score_th is None else self.score_th
self.plot(bboxes, scores, locations, labels, score_th, colors[ci])
count = len(targets[0].bbox) if scores is None else (scores > score_th).sum()
title += "{}({}) ".format(count, len(targets[0].bbox))
plt.title(title)
plt.show()
input()
示例8: filter_results
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def filter_results(self, boxlist, num_classes):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
"""
# unwrap the boxlist to avoid additional overhead.
# if we had multi-class NMS, we could perform this directly on the boxlist
boxes = boxlist.bbox.reshape(-1, num_classes * 4)
scores = boxlist.get_field("scores").reshape(-1, num_classes)
device = scores.device
result = []
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
inds_all = scores > self.score_thresh
for j in range(1, num_classes):
inds = inds_all[:, j].nonzero().squeeze(1)
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.detections_per_img > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
return result
示例9: select_over_all_levels
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def select_over_all_levels(self, boxlists):
num_images = len(boxlists)
results = []
for i in range(num_images):
scores = boxlists[i].get_field("scores")
labels = boxlists[i].get_field("labels")
boxes = boxlists[i].bbox
boxlist = boxlists[i]
result = []
# skip the background
for j in range(1, self.num_classes):
inds = (labels == j).nonzero().view(-1)
scores_j = scores[inds]
boxes_j = boxes[inds, :].view(-1, 4)
boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms_thresh,
score_field="scores"
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j,
dtype=torch.int64,
device=scores.device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.fpn_post_nms_top_n > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(),
number_of_detections - self.fpn_post_nms_top_n + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
results.append(result)
return results
示例10: filter_results
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def filter_results(self, boxlist, num_classes):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
"""
# unwrap the boxlist to avoid additional overhead.
# if we had multi-class NMS, we could perform this directly on the boxlist
boxes = boxlist.bbox.reshape(-1, num_classes * 4)
scores = boxlist.get_field("scores").reshape(-1, num_classes)
device = scores.device
result = []
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
inds_all = scores > self.score_thresh
for j in range(1, num_classes):
inds = inds_all[:, j].nonzero().squeeze(1)
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 4: (j + 1) * 4]
boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class_old = boxlist_for_class
if cfg.TEST.SOFT_NMS.ENABLED:
boxlist_for_class = boxlist_soft_nms(
boxlist_for_class,
sigma=cfg.TEST.SOFT_NMS.SIGMA,
overlap_thresh=self.nms,
score_thresh=0.0001,
method=cfg.TEST.SOFT_NMS.METHOD
)
else:
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms
)
# Refine the post-NMS boxes using bounding-box voting
if cfg.TEST.BBOX_VOTE.ENABLED and boxes_j.shape[0] > 0:
boxlist_for_class = boxlist_box_voting(
boxlist_for_class,
boxlist_for_class_old,
cfg.TEST.BBOX_VOTE.VOTE_TH,
scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.detections_per_img > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
return result
示例11: filter_results
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def filter_results(self, boxlist, num_classes):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
"""
# unwrap the boxlist to avoid additional overhead.
# if we had multi-class NMS, we could perform this directly on the boxlist
boxes = boxlist.bbox.reshape(-1, num_classes * 4)
quad_boxes = boxlist.quad_bbox.reshape(-1, num_classes * 8)
scores = boxlist.get_field("scores").reshape(-1, num_classes)
device = scores.device
result = []
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
inds_all = scores > self.score_thresh
for j in range(1, num_classes):
inds = inds_all[:, j].nonzero().squeeze(1)
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
quad_boxes_j = quad_boxes[inds, j * 8 : (j + 1) * 8]
boxlist_for_class = QuadBoxList(quad_boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.bbox = boxes_j
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.detections_per_img > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
return result
示例12: filter_results
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def filter_results(self, boxlist, num_classes):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
"""
# unwrap the boxlist to avoid additional overhead.
# if we had multi-class NMS, we could perform this directly on the boxlist
boxes = boxlist.bbox.reshape(-1, num_classes * 5)
scores = boxlist.get_field("scores").reshape(-1, num_classes)
device = scores.device
result = []
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
inds_all = scores > self.score_thresh
for j in range(1, num_classes):
inds = inds_all[:, j].nonzero().squeeze(1)
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 5 : (j + 1) * 5]
boxlist_for_class = RBoxList(boxes_j, boxlist.size, mode="xywha")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms, score_field="scores"
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.detections_per_img > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
return result
示例13: filter_results
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def filter_results(self, boxlist, num_classes):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
"""
# unwrap the boxlist to avoid additional overhead.
# if we had multi-class NMS, we could perform this directly on the boxlist
boxes = boxlist.bbox.reshape(-1, num_classes * 4)
scores = boxlist.get_field("scores").reshape(-1, num_classes)
device = scores.device
result = []
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
inds_all = scores > self.score_thresh
for j in range(1, num_classes):
inds = inds_all[:, j].nonzero().squeeze(1)
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms, score_field="scores"
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.detections_per_img > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
return result
示例14: box_results_with_nms_and_limit
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def box_results_with_nms_and_limit(
scores, boxes, score_thresh=0.05, nms=0.5, detections_per_img=100
):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
`boxes` has shape (#detections, 4 * #classes), where each row represents
a list of predicted bounding boxes for each of the object classes in the
dataset (including the background class). The detections in each row
originate from the same object proposal.
`scores` has shape (#detection, #classes), where each row represents a list
of object detection confidence scores for each of the object classes in the
dataset (including the background class). `scores[i, j]`` corresponds to the
box at `boxes[i, j * 4:(j + 1) * 4]`.
"""
num_classes = scores.shape[1]
cls_boxes = []
cls_scores = []
labels = []
device = scores.device
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
for j in range(1, num_classes):
inds = scores[:, j] > score_thresh
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
keep = box_nms(boxes_j, scores_j, nms)
cls_boxes.append(boxes_j[keep])
cls_scores.append(scores_j[keep])
# TODO see why we need the device argument
labels.append(torch.full_like(keep, j, device=device))
cls_scores = torch.cat(cls_scores, dim=0)
cls_boxes = torch.cat(cls_boxes, dim=0)
labels = torch.cat(labels, dim=0)
number_of_detections = len(cls_scores)
# Limit to max_per_image detections **over all classes**
if number_of_detections > detections_per_img > 0:
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep)
keep = keep.squeeze(1) if keep.numel() else keep
cls_boxes = cls_boxes[keep]
cls_scores = cls_scores[keep]
labels = labels[keep]
return cls_scores, cls_boxes, labels
示例15: filter_results
# 需要导入模块: import torch [as 别名]
# 或者: from torch import kthvalue [as 别名]
def filter_results(self, boxlist, num_classes):
"""Returns bounding-box detection results by thresholding on scores and
applying non-maximum suppression (NMS).
"""
# unwrap the boxlist to avoid additional overhead.
# if we had multi-class NMS, we could perform this directly on the boxlist
boxes = boxlist.bbox.reshape(-1, num_classes * 4)
scores = boxlist.get_field("scores").reshape(-1, num_classes)
device = scores.device
result = []
# Apply threshold on detection probabilities and apply NMS
# Skip j = 0, because it's the background class
if self.imbalanced_decider is None:
inds_all = scores > self.score_thresh
else:
inds_all = self.imbalanced_decider(scores)
for j in range(1, num_classes):
inds = inds_all[:, j].nonzero().squeeze(1)
scores_j = scores[inds, j]
boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
boxlist_for_class.add_field("scores", scores_j)
boxlist_for_class = boxlist_nms(
boxlist_for_class, self.nms
)
num_labels = len(boxlist_for_class)
boxlist_for_class.add_field(
"labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
)
result.append(boxlist_for_class)
result = cat_boxlist(result)
number_of_detections = len(result)
# Limit to max_per_image detections **over all classes**
if number_of_detections > self.detections_per_img > 0:
cls_scores = result.get_field("scores")
image_thresh, _ = torch.kthvalue(
cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
)
keep = cls_scores >= image_thresh.item()
keep = torch.nonzero(keep).squeeze(1)
result = result[keep]
return result