本文整理汇总了Python中torch.irfft方法的典型用法代码示例。如果您正苦于以下问题:Python torch.irfft方法的具体用法?Python torch.irfft怎么用?Python torch.irfft使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.irfft方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: INVLS_pytorch
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def INVLS_pytorch(FB, FBC, F2B, FR, tau, sf=2):
'''
FB: NxCxWxHx2
F2B: NxCxWxHx2
x1 = FB.*FR;
FBR = BlockMM(nr,nc,Nb,m,x1);
invW = BlockMM(nr,nc,Nb,m,F2B);
invWBR = FBR./(invW + tau*Nb);
fun = @(block_struct) block_struct.data.*invWBR;
FCBinvWBR = blockproc(FBC,[nr,nc],fun);
FX = (FR-FCBinvWBR)/tau;
Xest = real(ifft2(FX));
'''
x1 = cmul(FB, FR)
FBR = torch.mean(splits(x1, sf), dim=-1, keepdim=False)
invW = torch.mean(splits(F2B, sf), dim=-1, keepdim=False)
invWBR = cdiv(FBR, csum(invW, tau))
FCBinvWBR = cmul(FBC, invWBR.repeat(1,1,sf,sf,1))
FX = (FR-FCBinvWBR)/tau
Xest = torch.irfft(FX, 2, onesided=False)
return Xest
示例2: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(self, z):
z, cond = z
# Reshape filter coefficients to complex form
filter_coef = self.filter_coef.reshape([-1, self.filter_size // 2 + 1, 1]).expand([-1, self.filter_size // 2 + 1, 2]).contiguous()
filter_coef[:,:,1] = 0
# Compute filter windowed impulse response
h = torch.irfft(filter_coef, 1, signal_sizes=(self.filter_size,))
h_w = self.filter_window.unsqueeze(0) * h
h_w = nn.functional.pad(h_w, (0, self.block_size - self.filter_size), "constant", 0)
# Compute the spectral transform
S_sig = torch.rfft(z, 1).reshape(z.shape[0], -1, self.block_size // 2 + 1, 2)
# Compute the spectral mask
H = torch.rfft(h_w, 1).reshape(z.shape[0], -1, self.block_size // 2 + 1, 2)
# Filter the original noise
S_filtered = torch.zeros_like(H)
S_filtered[:,:,:,0] = H[:,:,:,0] * S_sig[:,:,:,0] - H[:,:,:,1] * S_sig[:,:,:,1]
S_filtered[:,:,:,1] = H[:,:,:,0] * S_sig[:,:,:,1] + H[:,:,:,1] * S_sig[:,:,:,0]
S_filtered = S_filtered.reshape(-1, self.block_size // 2 + 1, 2)
# Inverse the spectral noise back to signal
filtered_noise = torch.irfft(S_filtered, 1)[:,:self.block_size].reshape(z.shape[0], -1)
return filtered_noise
示例3: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(self, z):
z, conditions = z
# Pad the input sequence
y = nn.functional.pad(z, (0, self.size), "constant", 0)
# Compute STFT
Y_S = torch.rfft(y, 1)
# Compute the current impulse response
idx = torch.sigmoid(self.wetdry) * self.identity
imp = torch.sigmoid(1 - self.wetdry) * self.impulse
dcy = torch.exp(-(torch.exp(self.decay) + 2) * torch.linspace(0,1, self.size).to(z.device))
final_impulse = idx + imp * dcy
# Pad the impulse response
impulse = nn.functional.pad(final_impulse, (0, self.size), "constant", 0)
if y.shape[-1] > self.size:
impulse = nn.functional.pad(impulse, (0, y.shape[-1] - impulse.shape[-1]), "constant", 0)
IR_S = torch.rfft(impulse.detach(),1).expand_as(Y_S)
# Apply the reverb
Y_S_CONV = torch.zeros_like(IR_S)
Y_S_CONV[:,:,0] = Y_S[:,:,0] * IR_S[:,:,0] - Y_S[:,:,1] * IR_S[:,:,1]
Y_S_CONV[:,:,1] = Y_S[:,:,0] * IR_S[:,:,1] + Y_S[:,:,1] * IR_S[:,:,0]
# Invert the reverberated signal
y = torch.irfft(Y_S_CONV, 1, signal_sizes=(y.shape[-1],))
return y
示例4: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(self, z):
sig, conditions = z
# Create noise source
noise = torch.randn([sig.shape[0], sig.shape[1], self.block_size]).detach().to(sig.device).reshape(-1, self.block_size) * self.noise_att
S_noise = torch.rfft(noise, 1).reshape(sig.shape[0], -1, self.block_size // 2 + 1, 2)
# Reshape filter coefficients to complex form
filter_coef = self.filter_coef.reshape([-1, self.filter_size // 2 + 1, 1]).expand([-1, self.filter_size // 2 + 1, 2]).contiguous()
filter_coef[:,:,1] = 0
# Compute filter windowed impulse response
h = torch.irfft(filter_coef, 1, signal_sizes=(self.filter_size,))
h_w = self.filter_window.unsqueeze(0) * h
h_w = nn.functional.pad(h_w, (0, self.block_size - self.filter_size), "constant", 0)
# Compute the spectral mask
H = torch.rfft(h_w, 1).reshape(sig.shape[0], -1, self.block_size // 2 + 1, 2)
# Filter the original noise
S_filtered = torch.zeros_like(H)
S_filtered[:,:,:,0] = H[:,:,:,0] * S_noise[:,:,:,0] - H[:,:,:,1] * S_noise[:,:,:,1]
S_filtered[:,:,:,1] = H[:,:,:,0] * S_noise[:,:,:,1] + H[:,:,:,1] * S_noise[:,:,:,0]
S_filtered = S_filtered.reshape(-1, self.block_size // 2 + 1, 2)
# Inverse the spectral noise back to signal
filtered_noise = torch.irfft(S_filtered, 1)[:,:self.block_size].reshape(sig.shape[0], -1)
return filtered_noise
示例5: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(self, z, x):
z = self.feature(z)
x = self.feature(x)
zf = torch.rfft(z, signal_ndim=2)
xf = torch.rfft(x, signal_ndim=2)
kzzf = torch.sum(tensor_complex_mulconj(zf,zf), dim=1, keepdim=True)
kzyf = tensor_complex_mulconj(zf, self.yf.to(device=z.device))
solution = tensor_complex_division(kzyf, kzzf + self.config.lambda0)
response = torch.irfft(torch.sum(tensor_complex_mulconj(xf, solution), dim=1, keepdim=True), signal_ndim=2)
return response
示例6: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(ctx, h1, s1, h2, s2, output_size, x, y, force_cpu_scatter_add=False):
ctx.save_for_backward(h1,s1,h2,s2,x,y)
ctx.x_size = tuple(x.size())
ctx.y_size = tuple(y.size())
ctx.force_cpu_scatter_add = force_cpu_scatter_add
ctx.output_size = output_size
# Compute the count sketch of each input
px = CountSketchFn_forward(h1, s1, output_size, x, force_cpu_scatter_add)
fx = torch.rfft(px,1)
re_fx = fx.select(-1, 0)
im_fx = fx.select(-1, 1)
del px
py = CountSketchFn_forward(h2, s2, output_size, y, force_cpu_scatter_add)
fy = torch.rfft(py,1)
re_fy = fy.select(-1,0)
im_fy = fy.select(-1,1)
del py
# Convolution of the two sketch using an FFT.
# Compute the FFT of each sketch
# Complex multiplication
re_prod, im_prod = ComplexMultiply_forward(re_fx,im_fx,re_fy,im_fy)
# Back to real domain
# The imaginary part should be zero's
re = torch.irfft(torch.stack((re_prod, im_prod), re_prod.dim()), 1, signal_sizes=(output_size,))
return re
示例7: irfft
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def irfft(t):
return torch.irfft(t, 2, onesided=False)
示例8: irfft
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def irfft(t):
# Complex-to-real Inverse Discrete Fourier Transform
return torch.irfft(t, 2, onesided=False)
示例9: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(self, x, FB, FBC, F2B, FBFy, alpha, sf):
FR = FBFy + torch.rfft(alpha*x, 2, onesided=False)
x1 = cmul(FB, FR)
FBR = torch.mean(splits(x1, sf), dim=-1, keepdim=False)
invW = torch.mean(splits(F2B, sf), dim=-1, keepdim=False)
invWBR = cdiv(FBR, csum(invW, alpha))
FCBinvWBR = cmul(FBC, invWBR.repeat(1, 1, sf, sf, 1))
FX = (FR-FCBinvWBR)/alpha.unsqueeze(-1)
Xest = torch.irfft(FX, 2, onesided=False)
return Xest
示例10: pad_irfft3
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def pad_irfft3(F):
"""
padded batch inverse real fft
:param f: tensor of shape [..., res0, res1, res2/2+1, 2]
"""
res = F.shape[-3]
f0 = torch.ifft(F.transpose(-4,-2), signal_ndim=1).transpose(-2,-4)
f1 = torch.ifft(f0.transpose(-3,-2), signal_ndim=1).transpose(-2,-3)
f2 = torch.irfft(f1, signal_ndim=1, signal_sizes=[res]) # [..., res0, res1, res2]
return f2
示例11: irfft2
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def irfft2(data):
assert data.size(-1) == 2
data = ifftshift(data, dim=(-3, -2))
data = torch.irfft(data, 2, normalized=True, onesided=False)
data = fftshift(data, dim=(-2, -1))
return data
示例12: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def forward(self):
"""
Return the image
"""
ch, h, w = self.shape
scaled_spectrum = self.spectrum_var * self.spertum_scale
img = torch.irfft(scaled_spectrum, 2, onesided=True, normalized=False)
img = img[:ch, :h, :w]
return img.unsqueeze(0) / 4.
示例13: cifft2
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def cifft2(a, signal_sizes=None):
"""Do inverse FFT corresponding to cfft2."""
return torch.irfft(irfftshift2(a), 2, signal_sizes=signal_sizes)
示例14: idct
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def idct(X, norm=None):
"""
The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III
Our definition of idct is that idct(dct(x)) == x
For the meaning of the parameter `norm`, see:
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html
:param X: the input signal
:param norm: the normalization, None or 'ortho'
:return: the inverse DCT-II of the signal over the last dimension
"""
x_shape = X.shape
N = x_shape[-1]
X_v = X.contiguous().view(-1, x_shape[-1]) / 2
if norm == 'ortho':
X_v[:, 0] *= np.sqrt(N) * 2
X_v[:, 1:] *= np.sqrt(N / 2) * 2
k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * np.pi / (2 * N)
W_r = torch.cos(k)
W_i = torch.sin(k)
V_t_r = X_v
V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1)
V_r = V_t_r * W_r - V_t_i * W_i
V_i = V_t_r * W_i + V_t_i * W_r
V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2)
v = torch.irfft(V, 1, onesided=False)
x = v.new_zeros(v.shape)
x[:, ::2] += v[:, :N - (N // 2)]
x[:, 1::2] += v.flip([1])[:, :N // 2]
return x.view(*x_shape)
示例15: filters
# 需要导入模块: import torch [as 别名]
# 或者: from torch import irfft [as 别名]
def filters(self):
ft_f = torch.rfft(self._filters, 1, normalized=True)
hft_f = torch.stack([ft_f[:, :, :, 1], - ft_f[:, :, :, 0]], dim=-1)
hft_f = torch.irfft(hft_f, 1, normalized=True,
signal_sizes=(self.kernel_size, ))
return torch.cat([self._filters, hft_f], dim=0)