本文整理汇总了Python中torch.hub.load_state_dict_from_url方法的典型用法代码示例。如果您正苦于以下问题:Python hub.load_state_dict_from_url方法的具体用法?Python hub.load_state_dict_from_url怎么用?Python hub.load_state_dict_from_url使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.hub
的用法示例。
在下文中一共展示了hub.load_state_dict_from_url方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def __init__(self, arch, replace_stride_with_dilation=None, multi_grid=None, pretrain=True,
norm_cfg=None, act_cfg=None):
cfg = MODEL_CFGS[arch]
super().__init__(
cfg['block'],
cfg['layer'],
replace_stride_with_dilation=replace_stride_with_dilation,
multi_grid=multi_grid,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
if pretrain:
logger.info('ResNet init weights from pretreain')
state_dict = load_state_dict_from_url(cfg['weights_url'])
self.load_state_dict(state_dict, strict=False)
else:
logger.info('ResNet init weights')
init_weights(self.modules())
del self.fc, self.avgpool
示例2: gsc_super_sparse_cnn
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def gsc_super_sparse_cnn(pretrained=False, progress=True):
"""
Super Sparse CNN model used to classify `Google Speech Commands`
dataset as described in `How Can We Be So Dense?`_ paper.
This model provides a sparser version of :class:`GSCSparseCNN`
:param pretrained: If True, returns a model pre-trained on Google Speech Commands
:param progress: If True, displays a progress bar of the download to stderr
"""
model = GSCSuperSparseCNN()
if pretrained:
state_dict = load_state_dict_from_url(
MODEL_URLS["gsc_super_sparse_cnn"], progress=progress
)
model.load_state_dict(state_dict)
return model
示例3: dpn68
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def dpn68(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-68 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn68']))
return model
示例4: dpn68b
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def dpn68b(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-68b model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
small=True, num_init_features=10, k_r=128, groups=32,
b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn68b-extra']))
return model
示例5: dpn92
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def dpn92(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-92 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=64, k_r=96, groups=32,
k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn92-extra']))
return model
示例6: dpn98
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def dpn98(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-98 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=96, k_r=160, groups=40,
k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn98']))
return model
示例7: dpn131
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def dpn131(pretrained=False, test_time_pool=False, **kwargs):
"""Constructs a DPN-131 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet-1K
test_time_pool (bool): If True, pools features for input resolution beyond
standard 224x224 input with avg+max at inference/validation time
**kwargs : Keyword args passed to model __init__
num_classes (int): Number of classes for classifier linear layer, default=1000
"""
model = DPN(
num_init_features=128, k_r=160, groups=40,
k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128),
test_time_pool=test_time_pool, **kwargs)
if pretrained:
model.load_state_dict(load_state_dict_from_url(model_urls['dpn131']))
return model
示例8: _efficientdet
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def _efficientdet(arch, pretrained=None, **kwargs):
cfgs = deepcopy(CFGS)
cfg_settings = cfgs[arch]["default"]
cfg_params = cfg_settings.pop("params")
kwargs.update(cfg_params)
model = EfficientDet(**kwargs)
if pretrained:
state_dict = load_state_dict_from_url(cfgs[arch][pretrained]["url"])
kwargs_cls = kwargs.get("num_classes", None)
if kwargs_cls and kwargs_cls != cfg_settings["num_classes"]:
logging.warning(
f"Using model pretrained for {cfg_settings['num_classes']} classes with {kwargs_cls} classes. Last layer is initialized randomly"
)
last_conv_name = f"cls_head_convs.{kwargs['num_head_repeats']}.1"
state_dict[f"{last_conv_name}.weight"] = model.state_dict()[f"{last_conv_name}.weight"]
state_dict[f"{last_conv_name}.bias"] = model.state_dict()[f"{last_conv_name}.bias"]
model.load_state_dict(state_dict)
setattr(model, "pretrained_settings", cfg_settings)
return model
示例9: __init__
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def __init__(self, urls, pretrained=True, preprocess=True, postprocess=True, progress=True):
super().__init__(make_layers())
if pretrained:
state_dict = hub.load_state_dict_from_url(urls['vggish'], progress=progress)
super().load_state_dict(state_dict)
self.preprocess = preprocess
self.postprocess = postprocess
if self.postprocess:
self.pproc = Postprocessor()
if pretrained:
state_dict = hub.load_state_dict_from_url(urls['pca'], progress=progress)
# TODO: Convert the state_dict to torch
state_dict[vggish_params.PCA_EIGEN_VECTORS_NAME] = torch.as_tensor(
state_dict[vggish_params.PCA_EIGEN_VECTORS_NAME], dtype=torch.float
)
state_dict[vggish_params.PCA_MEANS_NAME] = torch.as_tensor(
state_dict[vggish_params.PCA_MEANS_NAME].reshape(-1, 1), dtype=torch.float
)
self.pproc.load_state_dict(state_dict)
示例10: _get_model_by_name
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def _get_model_by_name(model_name, classes=1000, pretrained=False):
block_args_list, global_params = get_efficientnet_params(model_name, override_params={'num_classes': classes})
model = EfficientNet(block_args_list, global_params)
try:
if pretrained:
pretrained_state_dict = load_state_dict_from_url(IMAGENET_WEIGHTS[model_name])
if classes != 1000:
random_state_dict = model.state_dict()
pretrained_state_dict['_fc.weight'] = random_state_dict['_fc.weight']
pretrained_state_dict['_fc.bias'] = random_state_dict['_fc.bias']
model.load_state_dict(pretrained_state_dict)
except KeyError as e:
print(f"NOTE: Currently model {e} doesn't have pretrained weights, therefore a model with randomly initialized"
" weights is returned.")
return model
示例11: mobilenetv3
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def mobilenetv3(input_size=224, num_classes=1000, scale=1., in_channels=3, drop_prob=0.0, num_steps=3e5, start_step=0,
small=False, get_weights=True, progress=True):
model = MobileNetV3(num_classes=num_classes, scale=scale, in_channels=in_channels, drop_prob=drop_prob,
num_steps=num_steps, start_step=start_step, small=small)
name = 'mobilenetv3_{}_{}_{}'.format('small' if small else 'large', scale, input_size)
if get_weights:
if name in model_urls:
state_dict = load_state_dict_from_url(model_urls[name], progress=progress, map_location='cpu')
model.load_state_dict(state_dict)
else:
raise ValueError
return model
示例12: mobilenet_v2
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def mobilenet_v2(pretrained=True):
model = MobileNetV2(width_mult=1)
if pretrained:
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
state_dict = load_state_dict_from_url(
'https://www.dropbox.com/s/47tyzpofuuyyv1b/mobilenetv2_1.0-f2a8633.pth.tar?dl=1', progress=True)
model.load_state_dict(state_dict)
return model
示例13: __init__
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def __init__(
self, *args, **kwargs):
super().__init__(*args, **kwargs)
state_dict = load_state_dict_from_url(
model_url,
map_location=torch_utils.get_device(),
progress=True)
self.net = SSD(resnet152_model_config)
self.net.load_state_dict(state_dict)
self.net.eval()
self.net = self.net.to(self.device)
示例14: __init__
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def __init__(
self,
model: str,
*args,
**kwargs):
super().__init__(*args, **kwargs)
if model == "mobilenet":
cfg = cfg_mnet
state_dict = load_state_dict_from_url(
"https://folk.ntnu.no/haakohu/RetinaFace_mobilenet025.pth",
map_location=torch_utils.get_device()
)
else:
assert model == "resnet50"
cfg = cfg_re50
state_dict = load_state_dict_from_url(
"https://folk.ntnu.no/haakohu/RetinaFace_ResNet50.pth",
map_location=torch_utils.get_device()
)
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
net = RetinaFace(cfg=cfg)
net.eval()
net.load_state_dict(state_dict)
self.cfg = cfg
self.net = net.to(self.device)
self.mean = np.array([104, 117, 123], dtype=np.float32)
示例15: load_pretrained
# 需要导入模块: from torch import hub [as 别名]
# 或者: from torch.hub import load_state_dict_from_url [as 别名]
def load_pretrained(model, url, filter_fn=None, strict=True):
if not url:
print("=> Warning: Pretrained model URL is empty, using random initialization.")
return
state_dict = load_state_dict_from_url(url, progress=False, map_location='cpu')
input_conv = 'conv_stem'
classifier = 'classifier'
in_chans = getattr(model, input_conv).weight.shape[1]
num_classes = getattr(model, classifier).weight.shape[0]
input_conv_weight = input_conv + '.weight'
pretrained_in_chans = state_dict[input_conv_weight].shape[1]
if in_chans != pretrained_in_chans:
if in_chans == 1:
print('=> Converting pretrained input conv {} from {} to 1 channel'.format(
input_conv_weight, pretrained_in_chans))
conv1_weight = state_dict[input_conv_weight]
state_dict[input_conv_weight] = conv1_weight.sum(dim=1, keepdim=True)
else:
print('=> Discarding pretrained input conv {} since input channel count != {}'.format(
input_conv_weight, pretrained_in_chans))
del state_dict[input_conv_weight]
strict = False
classifier_weight = classifier + '.weight'
pretrained_num_classes = state_dict[classifier_weight].shape[0]
if num_classes != pretrained_num_classes:
print('=> Discarding pretrained classifier since num_classes != {}'.format(pretrained_num_classes))
del state_dict[classifier_weight]
del state_dict[classifier + '.bias']
strict = False
if filter_fn is not None:
state_dict = filter_fn(state_dict)
model.load_state_dict(state_dict, strict=strict)