本文整理汇总了Python中torch.hann_window方法的典型用法代码示例。如果您正苦于以下问题:Python torch.hann_window方法的具体用法?Python torch.hann_window怎么用?Python torch.hann_window使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.hann_window方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _feature_window_function
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def _feature_window_function(window_type: str,
window_size: int,
blackman_coeff: float,
device: torch.device,
dtype: int,
) -> Tensor:
r"""Returns a window function with the given type and size
"""
if window_type == HANNING:
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype)
elif window_type == HAMMING:
return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype)
elif window_type == POVEY:
# like hanning but goes to zero at edges
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85)
elif window_type == RECTANGULAR:
return torch.ones(window_size, device=device, dtype=dtype)
elif window_type == BLACKMAN:
a = 2 * math.pi / (window_size - 1)
window_function = torch.arange(window_size, device=device, dtype=dtype)
# can't use torch.blackman_window as they use different coefficients
return (blackman_coeff - 0.5 * torch.cos(a * window_function) +
(0.5 - blackman_coeff) * torch.cos(2 * a * window_function)).to(device=device, dtype=dtype)
else:
raise Exception('Invalid window type ' + window_type)
示例2: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def __init__(self,
n_fft: int = 400,
win_length: Optional[int] = None,
hop_length: Optional[int] = None,
pad: int = 0,
window_fn: Callable[..., Tensor] = torch.hann_window,
power: Optional[float] = 2.,
normalized: bool = False,
wkwargs: Optional[dict] = None) -> None:
super(Spectrogram, self).__init__()
self.n_fft = n_fft
# number of FFT bins. the returned STFT result will have n_fft // 2 + 1
# number of frequecies due to onesided=True in torch.stft
self.win_length = win_length if win_length is not None else n_fft
self.hop_length = hop_length if hop_length is not None else self.win_length // 2
window = window_fn(self.win_length) if wkwargs is None else window_fn(self.win_length, **wkwargs)
self.register_buffer('window', window)
self.pad = pad
self.power = power
self.normalized = normalized
示例3: test_griffinlim
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_griffinlim(self):
# NOTE: This test is flaky without a fixed random seed
# See https://github.com/pytorch/audio/issues/382
torch.random.manual_seed(42)
tensor = torch.rand((1, 1000))
n_fft = 400
ws = 400
hop = 100
window = torch.hann_window(ws)
normalize = False
momentum = 0.99
n_iter = 8
length = 1000
rand_init = False
init = 'random' if rand_init else None
specgram = F.spectrogram(tensor, 0, window, n_fft, hop, ws, 2, normalize).sqrt()
ta_out = F.griffinlim(specgram, window, n_fft, hop, ws, 1, normalize,
n_iter, momentum, length, rand_init)
lr_out = librosa.griffinlim(specgram.squeeze(0).numpy(), n_iter=n_iter, hop_length=hop,
momentum=momentum, init=init, length=length)
lr_out = torch.from_numpy(lr_out).unsqueeze(0)
self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
示例4: test_griffinlim
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_griffinlim(self):
def func(tensor):
n_fft = 400
ws = 400
hop = 200
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
power = 2.
normalize = False
momentum = 0.99
n_iter = 32
length = 1000
rand_int = False
return F.griffinlim(tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, rand_int)
tensor = torch.rand((1, 201, 6))
self._assert_consistency(func, tensor)
示例5: compute_torch_stft
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def compute_torch_stft(audio, descriptor):
name, *args = descriptor.split("_")
n_fft, hop_size, *rest = args
n_fft = int(n_fft)
hop_size = int(hop_size)
stft = torch.stft(
audio,
n_fft=n_fft,
hop_length=hop_size,
window=torch.hann_window(n_fft, device=audio.device)
)
stft = torch.sqrt((stft ** 2).sum(-1))
return stft
示例6: get_window
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def get_window(name, window_length, squared=False):
"""
Returns a windowing function.
Arguments:
----------
window (str) : name of the window, currently only 'hann' is available
window_length (int) : length of the window
squared (bool) : if true, square the window
Returns:
----------
torch.FloatTensor : window of size `window_length`
"""
if name == "hann":
window = torch.hann_window(window_length)
elif name == "hamming":
window = torch.hamming_window(window_length)
elif name == "blackman":
window = torch.blackman_window(window_length)
else:
raise ValueError("Invalid window name {}".format(name))
if squared:
window *= window
return window
示例7: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def __init__(self, win_length=1024, hop_length=256, n_fft=2048, n_mels=80, preemp=True):
super(MelSpectrogram, self).__init__()
if preemp:
self.preemp = nn.Conv1d(1, 1, 2, bias=False, padding=1)
self.preemp.weight.data[0][0][0] = -0.97
self.preemp.weight.data[0][0][1] = 1.0
self.preemp.weight.requires_grad = False
else:
self.preemp = None
self.register_buffer('mel_basis', _build_mel_basis(n_fft, n_mels))
win = torch.hann_window(win_length)
self.register_buffer('win', win)
self.win_length = win_length
self.hop_length = hop_length
self.n_fft = n_fft
示例8: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def __init__(self, win_length, hop_length):
super().__init__()
self.win_length = win_length
self.hop_length = hop_length
self.disable_casts = self._opt_level == Optimization.mxprO1
self.torch_windows = {
'hann': torch.hann_window,
'hamming': torch.hamming_window,
'blackman': torch.blackman_window,
'bartlett': torch.bartlett_window,
'ones': torch.ones,
None: torch.ones,
}
示例9: test_griffinlim
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_griffinlim(self):
n_fft = 400
ws = 400
hop = 200
window = torch.hann_window(ws)
power = 2
normalize = False
momentum = 0.99
n_iter = 32
length = 1000
tensor = torch.rand((1, 201, 6))
self.assert_batch_consistencies(
F.griffinlim, tensor, window, n_fft, hop, ws, power, normalize, n_iter, momentum, length, 0, atol=5e-5
)
示例10: test_istft_is_inverse_of_stft1
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_istft_is_inverse_of_stft1(self):
# hann_window, centered, normalized, onesided
kwargs1 = {
'n_fft': 12,
'hop_length': 4,
'win_length': 12,
'window': torch.hann_window(12),
'center': True,
'pad_mode': 'reflect',
'normalized': True,
'onesided': True,
}
_test_istft_is_inverse_of_stft(kwargs1)
示例11: test_istft_is_inverse_of_stft2
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_istft_is_inverse_of_stft2(self):
# hann_window, centered, not normalized, not onesided
kwargs2 = {
'n_fft': 12,
'hop_length': 2,
'win_length': 8,
'window': torch.hann_window(8),
'center': True,
'pad_mode': 'reflect',
'normalized': False,
'onesided': False,
}
_test_istft_is_inverse_of_stft(kwargs2)
示例12: test_linearity_of_istft1
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_linearity_of_istft1(self):
# hann_window, centered, normalized, onesided
kwargs1 = {
'n_fft': 12,
'window': torch.hann_window(12),
'center': True,
'pad_mode': 'reflect',
'normalized': True,
'onesided': True,
}
data_size = (2, 7, 7, 2)
self._test_linearity_of_istft(data_size, kwargs1)
示例13: test_linearity_of_istft2
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_linearity_of_istft2(self):
# hann_window, centered, not normalized, not onesided
kwargs2 = {
'n_fft': 12,
'window': torch.hann_window(12),
'center': True,
'pad_mode': 'reflect',
'normalized': False,
'onesided': False,
}
data_size = (2, 12, 7, 2)
self._test_linearity_of_istft(data_size, kwargs2)
示例14: test_spectrogram
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def test_spectrogram(self):
def func(tensor):
n_fft = 400
ws = 400
hop = 200
pad = 0
window = torch.hann_window(ws, device=tensor.device, dtype=tensor.dtype)
power = 2.
normalize = False
return F.spectrogram(tensor, pad, window, n_fft, hop, ws, power, normalize)
tensor = common_utils.get_whitenoise()
self._assert_consistency(func, tensor)
示例15: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import hann_window [as 别名]
def __init__(self, hp):
self.hp = hp
self.window = torch.hann_window(window_length=hp.audio.win_length).cuda()
self.mel_basis = librosa.filters.mel(
sr=hp.audio.sr,
n_fft=hp.audio.n_fft,
n_mels=hp.audio.n_mels
)
self.mel_basis = torch.from_numpy(self.mel_basis).cuda() # [n_mels, n_fft//2+1]
self.criterion = torch.nn.MSELoss()