本文整理汇总了Python中torch.get_rng_state方法的典型用法代码示例。如果您正苦于以下问题:Python torch.get_rng_state方法的具体用法?Python torch.get_rng_state怎么用?Python torch.get_rng_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.get_rng_state方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __getitem__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
# create random image that is consistent with the index id
rng_state = torch.get_rng_state()
torch.manual_seed(index + self.random_offset)
img = torch.randn(*self.image_size)
target = torch.Tensor(1).random_(0, self.num_classes)[0]
torch.set_rng_state(rng_state)
# convert to PIL Image
img = transforms.ToPILImage()(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
示例2: save_rng_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def save_rng_states(device: torch.device,
rng_states: Deque[RNGStates],
) -> None:
""":meth:`Checkpoint.forward` captures the current PyTorch's random number
generator states at CPU and GPU to reuse in :meth:`Recompute.backward`.
.. seealso:: :ref:`Referential Transparency`
"""
cpu_rng_state = torch.get_rng_state()
gpu_rng_state: Optional[ByteTensor]
if device.type == 'cuda':
gpu_rng_state = torch.cuda.get_rng_state(device)
else:
gpu_rng_state = None
rng_states.append((cpu_rng_state, gpu_rng_state))
示例3: test_get_set_device_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def test_get_set_device_states(device, enabled):
shape = (1, 1, 10, 10)
if not torch.cuda.is_available() and device == 'cuda':
pytest.skip('This test requires a GPU to be available')
X = torch.ones(shape, device=device)
devices, states = get_device_states(X)
assert len(states) == (1 if device == 'cuda' else 0)
assert len(devices) == (1 if device == 'cuda' else 0)
cpu_rng_state = torch.get_rng_state()
Y = X * torch.rand(shape, device=device)
with torch.random.fork_rng(devices=devices, enabled=True):
if enabled:
if device == 'cpu':
torch.set_rng_state(cpu_rng_state)
else:
set_device_states(devices=devices, states=states)
Y2 = X * torch.rand(shape, device=device)
assert torch.equal(Y, Y2) == enabled
示例4: setUp
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def setUp(self):
if os.getenv("unlock_seed") is None or os.getenv("unlock_seed").lower() == "false":
self.rng_state = torch.get_rng_state()
torch.manual_seed(1)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(1)
random.seed(1)
mats = torch.randn(5, 4, 4)
mats = mats @ mats.transpose(-1, -2)
mats.div_(5).add_(torch.eye(4).unsqueeze_(0))
vecs = torch.randn(5, 4, 6)
self.mats = mats.detach().clone().requires_grad_(True)
self.mats_clone = mats.detach().clone().requires_grad_(True)
self.vecs = vecs.detach().clone().requires_grad_(True)
self.vecs_clone = vecs.detach().clone().requires_grad_(True)
示例5: save_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def save_states(self):
"""Saves the states inside a checkpoint associated with ``epoch``."""
checkpoint_data = dict()
if isinstance(self.model, torch.nn.DataParallel):
checkpoint_data['model'] = self.model.module.state_dict()
else:
checkpoint_data['model'] = self.model.state_dict()
checkpoint_data['optimizer'] = self.optimizer.state_dict()
checkpoint_data['random_states'] = (
random.getstate(), np.random.get_state(), torch.get_rng_state(), torch.cuda.get_rng_state() if
torch.cuda.is_available() else None
)
checkpoint_data['counters'] = self.counters
checkpoint_data['losses_epoch'] = self.losses_epoch
checkpoint_data['losses_it'] = self.losses_it
checkpoint_data.update(self.save_states_others())
self.experiment.checkpoint_save(checkpoint_data, self.counters['epoch'])
示例6: get_checkpoint
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def get_checkpoint(S, stop_conds, rng=None, get_state=True):
"""
Save the necessary information into a dictionary
"""
m = {}
m['ninitfeats'] = S.ninitfeats
m['x0'] = S.x0
x = S.x.clone().cpu().detach()
m['feats'] = np.where(x.numpy() >= 0)[0]
m.update({k: v[0] for k, v in stop_conds.items()})
if get_state:
m.update({constants.Checkpoint.MODEL: S.state_dict(),
constants.Checkpoint.OPT: S.opt_train.state_dict(),
constants.Checkpoint.RNG: torch.get_rng_state(),
})
if rng:
m.update({'rng_state': rng.get_state()})
return m
示例7: save_model
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def save_model(self, epochs=-1, optimisers=None, save_dir=None, name=ALICE, timestamp=None):
'''
Method to persist the model
'''
if not timestamp:
timestamp = str(int(time()))
state = {
EPOCHS: epochs + 1,
STATE_DICT: self.state_dict(),
OPTIMISER: [optimiser.state_dict() for optimiser in optimisers],
NP_RANDOM_STATE: np.random.get_state(),
PYTHON_RANDOM_STATE: random.getstate(),
PYTORCH_RANDOM_STATE: torch.get_rng_state()
}
path = os.path.join(save_dir,
name + "_model_timestamp_" + timestamp + ".tar")
torch.save(state, path)
print("saved model to path = {}".format(path))
示例8: with_torch_seed
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def with_torch_seed(seed):
assert isinstance(seed, int)
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state()
set_torch_seed(seed)
yield
torch.set_rng_state(rng_state)
torch.cuda.set_rng_state(cuda_rng_state)
示例9: torch_seed
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def torch_seed(seed: Optional[int]):
"""Context manager which seeds the PyTorch PRNG with the specified seed and
restores the state afterward. Setting seed to None is equivalent to running
the code without the context manager."""
if seed is None:
yield
return
state = torch.get_rng_state()
torch.manual_seed(seed)
try:
yield
finally:
torch.set_rng_state(state)
示例10: write_dummy_file
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def write_dummy_file(filename, num_examples, maxlen):
rng_state = torch.get_rng_state()
torch.manual_seed(0)
data = torch.rand(num_examples * maxlen)
data = 97 + torch.floor(26 * data).int()
with open(filename, "w") as h:
offset = 0
for _ in range(num_examples):
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
print(ex_str, file=h)
offset += ex_len
torch.set_rng_state(rng_state)
示例11: __enter__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def __enter__(self):
self.old_rng_state = torch.get_rng_state()
torch.manual_seed(self.rng_seed)
示例12: checkpoint
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def checkpoint(acc, epoch):
# Save checkpoint.
print('Saving..')
state = {
'net': net,
'acc': acc,
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7.' + args.sess + '_' + str(args.seed))
示例13: checkpoint
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def checkpoint(acc, epoch):
# Save checkpoint.
print('Saving..')
state = {
'net': net,
'acc': acc,
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/' + args.arch + '_' + args.sess + '_' + str(args.seed) + '.ckpt')
示例14: get_device_states
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def get_device_states(*args):
# This will not error out if "arg" is a CPU tensor or a non-tensor type because
# the conditionals short-circuit.
fwd_gpu_devices = list(set(arg.get_device() for arg in args
if isinstance(arg, torch.Tensor) and arg.is_cuda))
fwd_gpu_states = []
for device in fwd_gpu_devices:
with torch.cuda.device(device):
fwd_gpu_states.append(torch.cuda.get_rng_state())
return fwd_gpu_devices, fwd_gpu_states
示例15: save_rng_state
# 需要导入模块: import torch [as 别名]
# 或者: from torch import get_rng_state [as 别名]
def save_rng_state(file_name):
rng_state = torch.get_rng_state()
torch_save(rng_state, file_name)