本文整理汇总了Python中torch.gels方法的典型用法代码示例。如果您正苦于以下问题:Python torch.gels方法的具体用法?Python torch.gels怎么用?Python torch.gels使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.gels方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fit
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def fit(self, episodes):
# sequence_length * batch_size x feature_size
featmat = self._feature(episodes).view(-1, self.feature_size)
# sequence_length * batch_size x 1
returns = episodes.returns.view(-1, 1)
reg_coeff = self._reg_coeff
eye = torch.eye(self.feature_size, dtype=torch.float32,
device=self.linear.weight.device)
for _ in range(5):
try:
coeffs, _ = torch.gels(
torch.matmul(featmat.t(), returns),
torch.matmul(featmat.t(), featmat) + reg_coeff * eye
)
break
except RuntimeError:
reg_coeff += 10
else:
raise RuntimeError('Unable to solve the normal equations in '
'`LinearFeatureBaseline`. The matrix X^T*X (with X the design '
'matrix) is not full-rank, regardless of the regularization '
'(maximum regularization: {0}).'.format(reg_coeff))
self.linear.weight.data = coeffs.data.t()
示例2: weight_reconstruction
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def weight_reconstruction(next_module, next_input_feature, next_output_feature, cpu=True):
"""
reconstruct the weight of the next layer to the one being pruned
:param next_module: torch.nn.module, module of the next layer to the one being pruned
:param next_input_feature: torch.(cuda.)Tensor, new input feature map of the next layer
:param next_output_feature: torch.(cuda.)Tensor, original output feature map of the next layer
:param cpu: bool, whether done in cpu
:return:
void
"""
if next_module.bias is not None:
bias_size = [1] * next_output_feature.dim()
bias_size[1] = -1
next_output_feature -= next_module.bias.view(bias_size)
if cpu:
next_input_feature = next_input_feature.cpu()
if isinstance(next_module, torch.nn.modules.conv._ConvNd):
unfold = torch.nn.Unfold(kernel_size=next_module.kernel_size,
dilation=next_module.dilation,
padding=next_module.padding,
stride=next_module.stride)
if not cpu:
unfold = unfold.cuda()
unfold.eval()
next_input_feature = unfold(next_input_feature)
next_input_feature = next_input_feature.transpose(1, 2)
num_fields = next_input_feature.size(0) * next_input_feature.size(1)
next_input_feature = next_input_feature.reshape(num_fields, -1)
next_output_feature = next_output_feature.view(next_output_feature.size(0), next_output_feature.size(1), -1)
next_output_feature = next_output_feature.transpose(1, 2).reshape(num_fields, -1)
if cpu:
next_output_feature = next_output_feature.cpu()
param, _ = torch.gels(next_output_feature.data, next_input_feature.data)
param = param[0:next_input_feature.size(1), :].clone().t().contiguous().view(next_output_feature.size(1), -1)
if isinstance(next_module, torch.nn.modules.conv._ConvNd):
param = param.view(next_module.out_channels, next_module.in_channels, *next_module.kernel_size)
del next_module.weight
next_module.weight = torch.nn.Parameter(param)
示例3: RGBalbedoSHToLight
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def RGBalbedoSHToLight(colorImg, albedoImg, SH, confidence_map):
#remove non-zeros [now confidence_map is the more clean]
confidence_map[colorImg==0] = 0
confidence_map[albedoImg==0] = 0
id_non_not = confidence_map.nonzero()
idx_non = torch.unbind(id_non_not, 1) # this only works for two dimesion
colorImg_non = colorImg[idx_non]
albedoImg_non = albedoImg[idx_non]
#get the shadingImg element-wise divide
shadingImg_non = torch.div(colorImg_non, albedoImg_non)
shadingImg_non2 = shadingImg_non.view(-1,1)
#:means 9 channels [get the shading image]
SH0 = SH[0,:,:]; SH0_non = SH0[idx_non]
SH1 = SH[1,:,:]; SH1_non = SH1[idx_non]
SH2 = SH[2,:,:]; SH2_non = SH2[idx_non]
SH3 = SH[3,:,:]; SH3_non = SH3[idx_non]
SH4 = SH[4,:,:]; SH4_non = SH4[idx_non]
SH5 = SH[5,:,:]; SH5_non = SH5[idx_non]
SH6 = SH[6,:,:]; SH6_non = SH6[idx_non]
SH7 = SH[7,:,:]; SH7_non = SH7[idx_non]
SH8 = SH[8,:,:]; SH8_non = SH8[idx_non]
SH_NON = torch.stack([SH0_non, SH1_non, SH2_non, SH3_non, SH4_non, SH5_non, SH6_non, SH7_non, SH8_non], dim=-1)
## only use the first N soultions if M>N A(M*N) B(N*K) X should (N*K)[use N if M appears]
## torch.gels(B, A, out=None) Tensor
## https://pytorch.org/docs/stable/torch.html#torch.gels
light, _ = torch.gels(shadingImg_non2, SH_NON)
light_9 = light[0:9] # use first 9
return (light_9, SH)
示例4: fit
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def fit(self, states, returns):
features = self._features(states)
reg = self.reg * th.eye(features.size(1))
reg = reg.to(states.device)
A = features.t() @ features + reg
b = features.t() @ returns
if hasattr(th, 'lstsq'): # Required for torch < 1.3.0
coeffs, _ = th.lstsq(b, A)
else:
coeffs, _ = th.gels(b, A)
self.linear.weight.data = coeffs.data.t()
示例5: solve2theta
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def solve2theta(source, target):
source, target = source.clone(), target.clone()
oks = source[2, :] == 1
assert torch.sum(oks).item() >= 3, 'valid points : {:} is short'.format(oks)
if target.size(0) == 2: target = torch.cat((target, oks.unsqueeze(0).float()), dim=0)
source, target = source[:, oks], target[:, oks]
source, target = source.transpose(1,0), target.transpose(1,0)
assert source.size(1) == target.size(1) == 3
#X, residual, rank, s = np.linalg.lstsq(target.numpy(), source.numpy())
#theta = torch.Tensor(X.T[:2, :])
X_, qr = torch.gels(source, target)
theta = X_[:3, :2].transpose(1, 0)
return theta
# shape = [H,W]
示例6: LinearScaleInvarianceFramework
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def LinearScaleInvarianceFramework(self, prediction, gt, mask, w_grad):
assert(prediction.size(1) == gt.size(1))
assert(prediction.size(1) == mask.size(1))
w_data = 1.0
# w_grad = 0.5
gt_vec = gt[mask > 0.1]
pred_vec = prediction[mask > 0.1]
gt_vec = gt_vec.unsqueeze(1).float().cpu()
pred_vec = pred_vec.unsqueeze(1).float().cpu()
scale, _ = torch.gels(gt_vec.data, pred_vec.data)
scale = scale[0,0]
# print("scale" , scale)
# sys.exit()
prediction_scaled = prediction * scale
final_loss = w_data * self.L2Loss(prediction_scaled, mask, gt)
prediction_1 = prediction_scaled[:,:,::2,::2]
prediction_2 = prediction_1[:,:,::2,::2]
prediction_3 = prediction_2[:,:,::2,::2]
mask_1 = mask[:,:,::2,::2]
mask_2 = mask_1[:,:,::2,::2]
mask_3 = mask_2[:,:,::2,::2]
gt_1 = gt[:,:,::2,::2]
gt_2 = gt_1[:,:,::2,::2]
gt_3 = gt_2[:,:,::2,::2]
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_scaled , mask, gt)
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_1, mask_1, gt_1)
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_2, mask_2, gt_2)
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_3, mask_3, gt_3)
return final_loss
示例7: calIntsAcc
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def calIntsAcc(gt_i, pred_i, data_batch=1):
n, c, h, w = gt_i.shape
pred_i = pred_i.view(n, c, h, w)
ref_int = gt_i[:, :3].repeat(1, gt_i.shape[1] // 3, 1, 1)
gt_i = gt_i / ref_int
scale = torch.gels(gt_i.view(-1, 1), pred_i.view(-1, 1))
ints_ratio = (gt_i - scale[0][0] * pred_i).abs() / (gt_i + 1e-8)
ints_error = torch.stack(ints_ratio.split(3, 1), 1).mean(2)
return {'ints_ratio': ints_ratio.mean().item()}, ints_error.squeeze()
示例8: WeightedLinearScaleInvarianceFramework
# 需要导入模块: import torch [as 别名]
# 或者: from torch import gels [as 别名]
def WeightedLinearScaleInvarianceFramework(self, prediction, gt, mask, w_grad):
w_data = 1.0
assert(prediction.size(1) == gt.size(1))
assert(prediction.size(1) == mask.size(1))
if torch.sum(mask.data) < 10:
return 0
# w_grad = 0.5
gt_vec = gt[mask > 0.1]
pred_vec = prediction[mask > 0.1]
gt_vec = gt_vec.unsqueeze(1).float().cpu()
pred_vec = pred_vec.unsqueeze(1).float().cpu()
scale, _ = torch.gels(gt_vec.data, pred_vec.data)
scale = scale[0,0]
prediction_scaled = prediction * scale
ones_matrix = Variable(torch.zeros(gt.size(0), gt.size(1), gt.size(2), gt.size(3)) + 1, requires_grad = False)
weight = torch.min(1/gt, ones_matrix.float().cuda())
weight_mask = torch.mul(weight, mask)
final_loss = w_data * self.L2Loss(prediction_scaled, weight_mask, gt)
prediction_1 = prediction_scaled[:,:,::2,::2]
prediction_2 = prediction_1[:,:,::2,::2]
prediction_3 = prediction_2[:,:,::2,::2]
mask_1 = weight_mask[:,:,::2,::2]
mask_2 = mask_1[:,:,::2,::2]
mask_3 = mask_2[:,:,::2,::2]
gt_1 = gt[:,:,::2,::2]
gt_2 = gt_1[:,:,::2,::2]
gt_3 = gt_2[:,:,::2,::2]
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_scaled , weight_mask, gt)
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_1, mask_1, gt_1)
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_2, mask_2, gt_2)
final_loss += w_grad * self.L1GradientMatchingLoss(prediction_3, mask_3, gt_3)
return final_loss