本文整理汇总了Python中torch.full方法的典型用法代码示例。如果您正苦于以下问题:Python torch.full方法的具体用法?Python torch.full怎么用?Python torch.full使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.full方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: generate_embedding
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def generate_embedding(bert_model, labels):
"""Generate bert's embedding from fine-tuned model."""
batch_size, time = labels.shape
cls_ids = torch.full(
(batch_size, 1), bert_model.bert_text_encoder.cls_idx, dtype=labels.dtype, device=labels.device)
bert_labels = torch.cat([cls_ids, labels], 1)
# replace eos with sep
eos_idx = bert_model.bert_text_encoder.eos_idx
sep_idx = bert_model.bert_text_encoder.sep_idx
bert_labels[bert_labels == eos_idx] = sep_idx
embedding, _ = bert_model.bert(bert_labels, output_all_encoded_layers=True)
# sum over all layers embedding
embedding = torch.stack(embedding).sum(0)
# get rid of cls
embedding = embedding[:, 1:]
assert labels.shape == embedding.shape[:-1]
return embedding
示例2: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def __init__(self, size, device=False):
self.size = size
self._done = False
# The score for each translation on the beam.
self.scores = torch.zeros((size,), dtype=torch.float, device=device)
self.all_scores = []
# The backpointers at each time-step.
self.prev_ks = []
# The outputs at each time-step.
self.next_ys = [torch.full((size,), Constants.PAD, dtype=torch.long, device=device)]
self.next_ys[0][0] = Constants.SOS
self.finished = [False for _ in range(size)]
示例3: test_forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_forward(self):
batch_size = 10
shape = [2, 3, 4]
inputs = torch.randn(batch_size, *shape)
def test_case(scale, shift, true_outputs, true_logabsdet):
with self.subTest(scale=scale, shift=shift):
transform = standard.AffineScalarTransform(scale=scale, shift=shift)
outputs, logabsdet = transform(inputs)
self.assert_tensor_is_good(outputs, [batch_size] + shape)
self.assert_tensor_is_good(logabsdet, [batch_size])
self.assertEqual(outputs, true_outputs)
self.assertEqual(logabsdet,
torch.full([batch_size], true_logabsdet * np.prod(shape)))
self.eps = 1e-6
test_case(None, 2., inputs + 2., 0)
test_case(2., None, inputs * 2., np.log(2.))
test_case(2., 2., inputs * 2. + 2., np.log(2.))
示例4: test_inverse
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_inverse(self):
batch_size = 10
shape = [2, 3, 4]
inputs = torch.randn(batch_size, *shape)
def test_case(scale, shift, true_outputs, true_logabsdet):
with self.subTest(scale=scale, shift=shift):
transform = standard.AffineScalarTransform(scale=scale, shift=shift)
outputs, logabsdet = transform.inverse(inputs)
self.assert_tensor_is_good(outputs, [batch_size] + shape)
self.assert_tensor_is_good(logabsdet, [batch_size])
self.assertEqual(outputs, true_outputs)
self.assertEqual(logabsdet,
torch.full([batch_size], true_logabsdet * np.prod(shape)))
self.eps = 1e-6
test_case(None, 2., inputs - 2., 0)
test_case(2., None, inputs / 2., -np.log(2.))
test_case(2., 2., (inputs - 2.) / 2., -np.log(2.))
示例5: barabasi_albert_graph
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def barabasi_albert_graph(num_nodes, num_edges):
r"""Returns the :obj:`edge_index` of a Barabasi-Albert preferential
attachment model, where a graph of :obj:`num_nodes` nodes grows by
attaching new nodes with :obj:`num_edges` edges that are preferentially
attached to existing nodes with high degree.
Args:
num_nodes (int): The number of nodes.
num_edges (int): The number of edges from a new node to existing nodes.
"""
assert num_edges > 0 and num_edges < num_nodes
row, col = torch.arange(num_edges), torch.randperm(num_edges)
for i in range(num_edges, num_nodes):
row = torch.cat([row, torch.full((num_edges, ), i, dtype=torch.long)])
choice = np.random.choice(torch.cat([row, col]).numpy(), num_edges)
col = torch.cat([col, torch.from_numpy(choice)])
edge_index = torch.stack([row, col], dim=0)
edge_index, _ = remove_self_loops(edge_index)
edge_index = to_undirected(edge_index, num_nodes)
return edge_index
示例6: test_clip_grad_norm_
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_clip_grad_norm_(self):
params = torch.nn.Parameter(torch.zeros(5)).requires_grad_(False)
grad_norm = utils.clip_grad_norm_(params, 1.0)
self.assertTrue(torch.is_tensor(grad_norm))
self.assertEqual(grad_norm, 0.0)
params = [torch.nn.Parameter(torch.zeros(5)) for i in range(3)]
for p in params:
p.grad = torch.full((5,), fill_value=2.)
grad_norm = utils.clip_grad_norm_(params, 1.0)
exp_grad_norm = torch.full((15,), fill_value=2.).norm()
self.assertTrue(torch.is_tensor(grad_norm))
self.assertEqual(grad_norm, exp_grad_norm)
grad_norm = utils.clip_grad_norm_(params, 1.0)
self.assertAlmostEqual(grad_norm, torch.tensor(1.0))
示例7: load_dataset
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if self.args.max_sentences is not None:
bsz = self.args.max_sentences
else:
bsz = max(1, self.args.max_tokens // self.args.tokens_per_sample)
self.datasets[split] = DummyDataset(
{
'id': 1,
'net_input': {
'src_tokens': torch.stack([self.dummy_src for _ in range(bsz)]),
'src_lengths': torch.full(
(bsz, ), self.args.tokens_per_sample, dtype=torch.long
),
},
'target': torch.stack([self.dummy_tgt for _ in range(bsz)]),
'nsentences': bsz,
'ntokens': bsz * self.args.tokens_per_sample,
},
num_items=self.args.dataset_size,
item_size=self.args.tokens_per_sample,
)
示例8: test_std_share_network_output_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_std_share_network_output_values(input_dim, output_dim, hidden_sizes):
module = GaussianMLPTwoHeadedModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_mean = torch.full(
(output_dim, ), input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = (
input_dim * torch.Tensor(hidden_sizes).prod()).exp().pow(2).item()
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
assert dist.rsample().shape == (output_dim, )
示例9: test_std_share_network_output_values_with_batch
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_std_share_network_output_values_with_batch(input_dim, output_dim,
hidden_sizes):
module = GaussianMLPTwoHeadedModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
batch_size = 5
dist = module(torch.ones([batch_size, input_dim]))
exp_mean = torch.full(
(batch_size, output_dim),
input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = (
input_dim * torch.Tensor(hidden_sizes).prod()).exp().pow(2).item()
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(
torch.full((batch_size, output_dim), exp_variance))
assert dist.rsample().shape == (batch_size, output_dim)
示例10: test_std_network_output_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_std_network_output_values(input_dim, output_dim, hidden_sizes):
init_std = 2.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=init_std,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_mean = torch.full(
(output_dim, ), input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = init_std**2
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
assert dist.rsample().shape == (output_dim, )
示例11: test_softplus_std_network_output_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_softplus_std_network_output_values(input_dim, output_dim,
hidden_sizes):
init_std = 2.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=init_std,
hidden_nonlinearity=None,
std_parameterization='softplus',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_mean = input_dim * torch.Tensor(hidden_sizes).prod().item()
exp_variance = torch.Tensor([init_std]).exp().add(1.).log()**2
assert dist.mean.equal(torch.full((output_dim, ), exp_mean))
assert dist.variance.equal(torch.full((output_dim, ), exp_variance[0]))
assert dist.rsample().shape == (output_dim, )
示例12: test_exp_min_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_exp_min_std(input_dim, output_dim, hidden_sizes):
min_value = 10.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=1.,
min_std=min_value,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.zeros_,
output_w_init=nn.init.zeros_)
dist = module(torch.ones(input_dim))
exp_variance = min_value**2
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
示例13: test_exp_max_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_exp_max_std(input_dim, output_dim, hidden_sizes):
max_value = 1.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=10.,
max_std=max_value,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.zeros_,
output_w_init=nn.init.zeros_)
dist = module(torch.ones(input_dim))
exp_variance = max_value**2
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
示例14: test_softplus_min_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_softplus_min_std(input_dim, output_dim, hidden_sizes):
min_value = 2.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=1.,
min_std=min_value,
hidden_nonlinearity=None,
std_parameterization='softplus',
hidden_w_init=nn.init.zeros_,
output_w_init=nn.init.zeros_)
dist = module(torch.ones(input_dim))
exp_variance = torch.Tensor([min_value]).exp().add(1.).log()**2
assert dist.variance.equal(torch.full((output_dim, ), exp_variance[0]))
示例15: test_softplus_max_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import full [as 别名]
def test_softplus_max_std(input_dim, output_dim, hidden_sizes):
max_value = 1.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=10,
max_std=max_value,
hidden_nonlinearity=None,
std_parameterization='softplus',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_variance = torch.Tensor([max_value]).exp().add(1.).log()**2
assert torch.equal(dist.variance,
torch.full((output_dim, ), exp_variance[0]))