本文整理汇总了Python中torch.fmod方法的典型用法代码示例。如果您正苦于以下问题:Python torch.fmod方法的具体用法?Python torch.fmod怎么用?Python torch.fmod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.fmod方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def forward(self, x):
x = self.feature_model(x)
y0 = self.fc(x)
Pc = F.softmax(y0, dim=1)
y1 = torch.stack([self.bin_models[i](x) for i in range(self.num_classes)]).permute(1, 2, 0)
Pl = F.softmax(y1, dim=1)
Plc = Pl * torch.unsqueeze(Pc, dim=1)
ind = torch.argmax(Plc.view(x.size(0), -1), dim=1, keepdim=True)
ip = ind/self.num_classes
ic = torch.fmod(ind, self.num_classes)
label = torch.zeros(ic.size(0), self.num_classes).scatter_(1, ic.data.cpu(), 1.0)
label = Variable(label.unsqueeze(2).cuda())
y1 = torch.squeeze(torch.bmm(y1, label), 2)
if not args.multires:
y2 = torch.stack([self.res_models[i](x) for i in range(self.num_classes)]).permute(1, 2, 0)
y2 = torch.squeeze(torch.bmm(y2, label), 2)
else:
y2 = torch.stack([self.res_models[i](x) for i in range(self.num_classes * self.num_clusters)])
y2 = y2.view(self.num_classes, self.num_clusters, -1, self.ndim).permute(1, 2, 3, 0)
y2 = torch.squeeze(torch.matmul(y2, label), 3)
pose_label = torch.zeros(ip.size(0), self.num_clusters).scatter_(1, ip.data.cpu(), 1.0)
pose_label = Variable(pose_label.unsqueeze(2).cuda())
y2 = torch.squeeze(torch.bmm(y2.permute(1, 2, 0), pose_label), 2)
return [y0, y1, y2, Plc] # cat, pose_bin, pose_delta
示例2: decompose
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def decompose(tensor, field):
"""decompose a tensor into its binary representation."""
torch_dtype = get_torch_dtype(field)
n_bits = get_n_bits(field)
powers = torch.arange(n_bits, dtype=torch_dtype)
if hasattr(tensor, "child") and isinstance(tensor.child, dict):
powers = powers.send(*list(tensor.child.keys()), **no_wrap)
for _ in range(len(tensor.shape)):
powers = powers.unsqueeze(0)
tensor = tensor.unsqueeze(-1)
moduli = 2 ** powers
tensor = torch.fmod((tensor / moduli.type_as(tensor)), 2)
return tensor
示例3: _test_attention
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def _test_attention(self, attention):
dummy_source_hids = torch.rand(self.src_len, self.bsz, self.ctx_dim)
dummy_decoder_state = torch.rand(self.bsz, self.dec_dim)
dummy_src_lengths = torch.fmod(torch.arange(self.bsz), self.src_len) + 1
attention(dummy_decoder_state, dummy_source_hids, dummy_src_lengths)
示例4: fmod
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def fmod(t1, t2):
"""
Element-wise division remainder of values of operand t1 by values of operand t2 (i.e. C Library function fmod), not commutative.
Takes the two operands (scalar or tensor, both may contain floating point number) whose elements are to be
divided (operand 1 by operand 2) as arguments.
Parameters
----------
t1: tensor or scalar
The first operand whose values are divided (may be floats)
t2: tensor or scalar
The second operand by whose values is divided (may be floats)
Returns
-------
result: ht.DNDarray
A tensor containing the remainder of the element-wise division (i.e. floating point values) of t1 by t2.
It has the sign as the dividend t1.
Examples:
---------
>>> import heat as ht
>>> ht.fmod(2.0, 2.0)
tensor([0.])
>>> T1 = ht.float32([[1, 2], [3, 4]])
>>> T2 = ht.float32([[2, 2], [2, 2]])
>>> ht.fmod(T1, T2)
tensor([[1., 0.],
[1., 0.]])
>>> s = 2.0
>>> ht.fmod(s, T1)
tensor([[0., 0.]
[2., 2.]])
"""
return operations.__binary_op(torch.fmod, t1, t2)
示例5: index_select_state
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def index_select_state(self, state, best_ids):
"""Select CTC states according to best ids
:param state : CTC state
:param best_ids : index numbers selected by beam pruning (B, W)
:return selected_state
"""
r, s, f_min, f_max, scoring_idmap = state
# convert ids to BWO space
vidx = (best_ids + self.pad_bo).view(-1)
# select hypothesis scores
s_new = torch.index_select(s.view(-1), 0, vidx)
s_new = s_new.view(-1, 1).repeat(1, self.odim).view(self.n_bb, self.odim)
# convert ids to BWS space (S: scoring_num)
if scoring_idmap is not None:
snum = self.scoring_num
beam_idx = (torch.div(best_ids, self.odim) + self.pad_b).view(-1)
label_ids = torch.fmod(best_ids, self.odim).view(-1)
score_idx = scoring_idmap[beam_idx, label_ids]
score_idx[score_idx == -1] = 0
vidx = score_idx + beam_idx * snum
else:
snum = self.odim
# select forward probabilities
r_new = torch.index_select(r.view(-1, 2, self.n_bb * snum), 2, vidx).view(
-1, 2, self.n_bb
)
return r_new, s_new, f_min, f_max
示例6: myProj
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def myProj(x):
angle = torch.norm(x, 2, 1, True)
axis = F.normalize(x)
angle = torch.fmod(angle, 2*np.pi)
return angle*axis
# my model for pose estimation: feature model + 1layer pose model x 12
示例7: testing
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def testing():
model.eval()
ytrue_cat, ytrue_pose = [], []
ypred_cat, ypred_pose = [], []
for i, sample in enumerate(test_loader):
xdata = Variable(sample['xdata'].cuda())
output = model(xdata)
output_cat = output[0]
output_bin = output[1]
output_res = output[2]
joint_probs = output[3]
ind = torch.argmax(joint_probs.view(xdata.size(0), -1), dim=1)
ip = ind/num_classes
ic = torch.fmod(ind, num_classes)
tmp_labels = ic.data.cpu().numpy()
ypred_cat.append(tmp_labels)
label = Variable(sample['label'])
ytrue_cat.append(sample['label'].squeeze().numpy())
ypred_bin = ip.data.cpu().numpy()
ypred_res = output_res.data.cpu().numpy()
ypred_pose.append(kmeans_dict[ypred_bin, :] + ypred_res)
ytrue_pose.append(sample['ydata'].numpy())
del xdata, label, output, sample, output_cat, output_bin, output_res, joint_probs, ind, ip, ic
gc.collect()
ytrue_cat = np.concatenate(ytrue_cat)
ypred_cat = np.concatenate(ypred_cat)
ytrue_pose = np.concatenate(ytrue_pose)
ypred_pose = np.concatenate(ypred_pose)
model.train()
return ytrue_cat, ytrue_pose, ypred_cat, ypred_pose
示例8: myProj
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def myProj(x):
angle = torch.norm(x, 2, 1, True)
axis = F.normalize(x)
angle = torch.fmod(angle, np.pi)
return angle*axis
# my_model
示例9: index_select_state
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def index_select_state(self, state, best_ids):
"""Select CTC states according to best ids
:param state : CTC state
:param best_ids : index numbers selected by beam pruning (B, W)
:return selected_state
"""
r, s, f_min, f_max, scoring_idmap = state
# convert ids to BWO space
vidx = (best_ids + self.pad_bo).view(-1)
# select hypothesis scores
s_new = torch.index_select(s.view(-1), 0, vidx)
s_new = s_new.view(-1, 1).repeat(1, self.odim).view(self.n_bb, self.odim)
# convert ids to BWS space (S: scoring_num)
if scoring_idmap is not None:
snum = self.scoring_num
beam_idx = (torch.div(best_ids, self.odim) + self.pad_b).view(-1)
label_ids = torch.fmod(best_ids, self.odim).view(-1)
score_idx = scoring_idmap[beam_idx, label_ids]
score_idx[score_idx == -1] = 0
vidx = score_idx + beam_idx * snum
else:
snum = self.odim
# select forward probabilities
r_new = torch.index_select(r.view(-1, 2, self.n_bb * snum), 2, vidx).view(-1, 2, self.n_bb)
return r_new, s_new, f_min, f_max
示例10: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def __init__(self, z_num, z_dim):
super(Embedding, self).__init__()
self.z_list = nn.ParameterList()
self.z_num = z_num
self.z_dim = z_dim
h,k = self.z_num
for i in range(h):
for j in range(k):
self.z_list.append(Parameter(torch.fmod(torch.randn(self.z_dim).cuda(), 2)))
示例11: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def __init__(self, f_size = 3, z_dim = 64, out_size=16, in_size=16):
super(HyperNetwork, self).__init__()
self.z_dim = z_dim
self.f_size = f_size
self.out_size = out_size
self.in_size = in_size
self.w1 = Parameter(torch.fmod(torch.randn((self.z_dim, self.out_size*self.f_size*self.f_size)).cuda(),2))
self.b1 = Parameter(torch.fmod(torch.randn((self.out_size*self.f_size*self.f_size)).cuda(),2))
self.w2 = Parameter(torch.fmod(torch.randn((self.z_dim, self.in_size*self.z_dim)).cuda(),2))
self.b2 = Parameter(torch.fmod(torch.randn((self.in_size*self.z_dim)).cuda(),2))
示例12: update_targets
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def update_targets(targets, best_indices, idx, vocab_size):
best_tensor_indices = torch.div(best_indices, vocab_size)
best_token_indices = torch.fmod(best_indices, vocab_size)
new_batch = torch.index_select(targets, 0, best_tensor_indices)
new_batch[:, idx] = best_token_indices
return new_batch
示例13: spiral_sampling
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def spiral_sampling(grid, percentage):
b, c, h, w = grid.size()
N = torch.tensor(h*w*percentage).int().float()
sampling = torch.zeros_like(grid)[:, 0, :, :].unsqueeze(1)
phi_k = torch.tensor(0.0).float()
for k in torch.arange(N - 1):
k = k.float() + 1.0
h_k = -1 + 2 * (k - 1) / (N - 1)
theta_k = torch.acos(h_k)
phi_k = phi_k + torch.tensor(3.6).float() / torch.sqrt(N) / torch.sqrt(1 - h_k * h_k) \
if k > 1.0 else torch.tensor(0.0).float()
phi_k = torch.fmod(phi_k, 2 * numpy.pi)
sampling[:, :, int(theta_k / numpy.pi * h) - 1, int(phi_k / numpy.pi / 2 * w) - 1] += 1.0
return (sampling > 0).float()
示例14: step
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['step'] += 1
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
buf.mul_(momentum).add_(d_p)
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# cyclical learning rate
t = (np.fmod(state['step']-1, self.c)+1)/self.c
if t <= 0.5:
step_size = (1-2*t)*group['alpha1'] + 2*t*group['alpha2']
else:
step_size = 2*(1-t)*group['alpha2'] + (2*t-1)*group['alpha1']
writer.add_scalar('lr', step_size, state['step'])
p.data.add_(-step_size, d_p)
return loss
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import fmod [as 别名]
def forward(self, indices, num_classes):
if not self._random_off_targets:
# construct one hot
batch_size = indices.size(0)
self._one_hot.resize_(batch_size, num_classes).fill_(0.0)
self._ones.resize_(batch_size, num_classes).fill_(1.0)
self._one_hot.scatter_(1, indices.view(-1,1), self._ones)
one_hot_labels = self._one_hot
# label smoothing
smooth_positives = 1.0 - self._label_smoothing
smooth_negatives = self._label_smoothing / num_classes
return one_hot_labels * smooth_positives + smooth_negatives
else:
# construct one hot
batch_size = indices.size(0)
self._one_hot.resize_(batch_size, num_classes).fill_(0.0)
self._ones.resize_(batch_size, num_classes).fill_(1.0)
self._one_hot.scatter_(1, indices.view(-1,1), self._ones)
positive_labels = self._one_hot
smooth_positives = 1.0 - self._label_smoothing
smooth_negatives = self._label_smoothing
positive_labels = positive_labels * smooth_positives
negative_labels = 1.0 - self._one_hot
self._noise.resize_(batch_size, num_classes).uniform_(1e-1, 1.0)
self._noise = self._noise * negative_labels
self._noise = smooth_negatives * self._noise / self._noise.sum(dim=1, keepdim=True)
one_hot_labels = positive_labels + self._noise
return one_hot_labels
# label smoothing
# smooth_positives = 1.0 - self._label_smoothing
# sum_negatives = self._label_smoothing
# self._noise.resize_(batch_size, num_classes).random_(1e-5, 1-3)
# self._noise = self._noise / self._noise.sum()
# torch.random()
# batch_size = indices.size(0)
# self._one_hot.resize_(batch_size, num_classes).fill_(0.0)
# self._ones.resize_(batch_size, num_classes).fill_(1.0)
# self._one_hot.scatter_(1, indices.view(-1,1), self._ones)
# torch.rand(1e-5, smooth_negatives)
# offsets = torch.from_numpy(np.random.randint(low=1, high=num_classes, size=[batch_size])).cuda()
# false_indices = torch.fmod((indices + offsets).float(), float(num_classes)).long()
# self._ones.resize_(batch_size, num_classes).fill_(smooth_negatives)
# self._one_hot.scatter_(1, false_indices.view(-1,1), self._ones)
# one_hot_labels = self._one_hot * 1.0
return one_hot_labels