本文整理汇总了Python中torch.equal方法的典型用法代码示例。如果您正苦于以下问题:Python torch.equal方法的具体用法?Python torch.equal怎么用?Python torch.equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_strides
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_strides():
from mmdet.core import AnchorGenerator
# Square strides
self = AnchorGenerator([10], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 5., 5., 15.], [5., 5., 15., 15.]])
assert torch.equal(anchors[0], expected_anchors)
# Different strides in x and y direction
self = AnchorGenerator([(10, 20)], [1.], [1.], [10])
anchors = self.grid_anchors([(2, 2)], device='cpu')
expected_anchors = torch.tensor([[-5., -5., 5., 5.], [5., -5., 15., 5.],
[-5., 15., 5., 25.], [5., 15., 15., 25.]])
assert torch.equal(anchors[0], expected_anchors)
示例2: test_max_pool_2d
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_max_pool_2d():
test_cases = OrderedDict([('in_w', [10, 20]), ('in_h', [10, 20]),
('in_channel', [1, 3]), ('out_channel', [1, 3]),
('kernel_size', [3, 5]), ('stride', [1, 2]),
('padding', [0, 1]), ('dilation', [1, 2])])
for in_h, in_w, in_cha, out_cha, k, s, p, d in product(
*list(test_cases.values())):
# wrapper op with 0-dim input
x_empty = torch.randn(0, in_cha, in_h, in_w, requires_grad=True)
wrapper = MaxPool2d(k, stride=s, padding=p, dilation=d)
wrapper_out = wrapper(x_empty)
# torch op with 3-dim input as shape reference
x_normal = torch.randn(3, in_cha, in_h, in_w)
ref = nn.MaxPool2d(k, stride=s, padding=p, dilation=d)
ref_out = ref(x_normal)
assert wrapper_out.shape[0] == 0
assert wrapper_out.shape[1:] == ref_out.shape[1:]
assert torch.equal(wrapper(x_normal), ref_out)
示例3: recommend
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def recommend(self, full_graph, K, h_user, h_item):
"""
Return a (n_user, K) matrix of recommended items for each user
"""
graph_slice = full_graph.edge_type_subgraph([self.user_to_item_etype])
n_users = full_graph.number_of_nodes(self.user_ntype)
latest_interactions = dgl.sampling.select_topk(graph_slice, 1, self.timestamp, edge_dir='out')
user, latest_items = latest_interactions.all_edges(form='uv', order='srcdst')
# each user should have at least one "latest" interaction
assert torch.equal(user, torch.arange(n_users))
recommended_batches = []
user_batches = torch.arange(n_users).split(self.batch_size)
for user_batch in user_batches:
latest_item_batch = latest_items[user_batch].to(device=h_item.device)
dist = h_item[latest_item_batch] @ h_item.t()
# exclude items that are already interacted
for i, u in enumerate(user_batch.tolist()):
interacted_items = full_graph.successors(u, etype=self.user_to_item_etype)
dist[i, interacted_items] = -np.inf
recommended_batches.append(dist.topk(K, 1)[1])
recommendations = torch.cat(recommended_batches, 0)
return recommendations
示例4: test_simple_conv_encoder_forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_simple_conv_encoder_forward(simple_conv_encoder_image_classification,
simple_tensor_conv2d):
"""
Args:
simple_conv_encoder_image_classification (@pytest.fixture): SimpleConvEncoder
simple_tensor_conv2d (@pytest.fixture): torch.Tensor
Asserts: True if the output's dimension is equal to the input's one
and that element-wise, the values have changed.
"""
input_dim = simple_tensor_conv2d.dim()
output = simple_conv_encoder_image_classification.forward(
simple_tensor_conv2d)
output_dim = output.dim()
equivalent = torch.equal(simple_tensor_conv2d, output)
assert input_dim == 4
assert output_dim == 2
assert not equivalent
示例5: test_apply_nonlinearity
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_apply_nonlinearity(simple_tensor):
"""
Args:
simple_tensor(@pytest.fixture): torch.Tensor
Asserts: True if the right Pytorch function is called.
"""
nonlinearity_args = {}
nonlinear = 'tanh'
expected_output = torch.nn.functional.tanh(simple_tensor)
applied_nonlinearity = apply_nonlinearity(simple_tensor, nonlinear,
**nonlinearity_args)
assert torch.equal(expected_output, applied_nonlinearity)
示例6: test_std_share_network_output_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_std_share_network_output_values(input_dim, output_dim, hidden_sizes):
module = GaussianMLPTwoHeadedModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_mean = torch.full(
(output_dim, ), input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = (
input_dim * torch.Tensor(hidden_sizes).prod()).exp().pow(2).item()
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
assert dist.rsample().shape == (output_dim, )
示例7: test_std_share_network_output_values_with_batch
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_std_share_network_output_values_with_batch(input_dim, output_dim,
hidden_sizes):
module = GaussianMLPTwoHeadedModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
batch_size = 5
dist = module(torch.ones([batch_size, input_dim]))
exp_mean = torch.full(
(batch_size, output_dim),
input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = (
input_dim * torch.Tensor(hidden_sizes).prod()).exp().pow(2).item()
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(
torch.full((batch_size, output_dim), exp_variance))
assert dist.rsample().shape == (batch_size, output_dim)
示例8: test_std_network_output_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_std_network_output_values(input_dim, output_dim, hidden_sizes):
init_std = 2.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=init_std,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_mean = torch.full(
(output_dim, ), input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = init_std**2
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
assert dist.rsample().shape == (output_dim, )
示例9: test_std_adaptive_network_output_values
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_std_adaptive_network_output_values(input_dim, output_dim,
hidden_sizes, std_hidden_sizes):
module = GaussianMLPIndependentStdModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
std_hidden_sizes=std_hidden_sizes,
hidden_nonlinearity=None,
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_,
std_hidden_nonlinearity=None,
std_hidden_w_init=nn.init.ones_,
std_output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_mean = torch.full(
(output_dim, ), input_dim * (torch.Tensor(hidden_sizes).prod().item()))
exp_variance = (
input_dim * torch.Tensor(hidden_sizes).prod()).exp().pow(2).item()
assert dist.mean.equal(exp_mean)
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
assert dist.rsample().shape == (output_dim, )
示例10: test_exp_min_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_exp_min_std(input_dim, output_dim, hidden_sizes):
min_value = 10.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=1.,
min_std=min_value,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.zeros_,
output_w_init=nn.init.zeros_)
dist = module(torch.ones(input_dim))
exp_variance = min_value**2
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
示例11: test_exp_max_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_exp_max_std(input_dim, output_dim, hidden_sizes):
max_value = 1.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=10.,
max_std=max_value,
hidden_nonlinearity=None,
std_parameterization='exp',
hidden_w_init=nn.init.zeros_,
output_w_init=nn.init.zeros_)
dist = module(torch.ones(input_dim))
exp_variance = max_value**2
assert dist.variance.equal(torch.full((output_dim, ), exp_variance))
示例12: test_softplus_min_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_softplus_min_std(input_dim, output_dim, hidden_sizes):
min_value = 2.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=1.,
min_std=min_value,
hidden_nonlinearity=None,
std_parameterization='softplus',
hidden_w_init=nn.init.zeros_,
output_w_init=nn.init.zeros_)
dist = module(torch.ones(input_dim))
exp_variance = torch.Tensor([min_value]).exp().add(1.).log()**2
assert dist.variance.equal(torch.full((output_dim, ), exp_variance[0]))
示例13: test_softplus_max_std
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def test_softplus_max_std(input_dim, output_dim, hidden_sizes):
max_value = 1.
module = GaussianMLPModule(
input_dim=input_dim,
output_dim=output_dim,
hidden_sizes=hidden_sizes,
init_std=10,
max_std=max_value,
hidden_nonlinearity=None,
std_parameterization='softplus',
hidden_w_init=nn.init.ones_,
output_w_init=nn.init.ones_)
dist = module(torch.ones(input_dim))
exp_variance = torch.Tensor([max_value]).exp().add(1.).log()**2
assert torch.equal(dist.variance,
torch.full((output_dim, ), exp_variance[0]))
示例14: testRandomForwards
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def testRandomForwards(self):
"""Test reference and patched net forward equivalence.
Test if, given rand fast weights, patched net and reference forwards
match up given random inputs.
"""
with higher.innerloop_ctx(self.target_net, self.opt) as (fnet, _):
for i in range(10):
fast_named_weights = OrderedDict(
(name, torch.rand(p.shape, requires_grad=True))
for name, p in self.reference_net.named_parameters()
)
fast_weights = [p for _, p in fast_named_weights.items()]
inputs = torch.rand(
self.batch_size, self.num_in_channels, self.in_h, self.in_w
)
self.assertTrue(
torch.equal(
self.reference_net(inputs, params=fast_named_weights),
fnet(inputs, params=fast_weights)
)
)
示例15: testSubModuleDirectCall
# 需要导入模块: import torch [as 别名]
# 或者: from torch import equal [as 别名]
def testSubModuleDirectCall(self):
"""Check that patched submodules can be called directly."""
class Module(nn.Module):
def __init__(self):
super().__init__()
self.submodule = nn.Linear(3, 4)
def forward(self, inputs):
return self.submodule(inputs)
module = _NestedEnc(nn.Linear(3, 4))
fmodule = higher.monkeypatch(module)
xs = torch.randn(2, 3)
fsubmodule = fmodule.f
self.assertTrue(torch.equal(fmodule(xs), fsubmodule(xs)))