当前位置: 首页>>代码示例>>Python>>正文


Python torch.empty_like方法代码示例

本文整理汇总了Python中torch.empty_like方法的典型用法代码示例。如果您正苦于以下问题:Python torch.empty_like方法的具体用法?Python torch.empty_like怎么用?Python torch.empty_like使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch的用法示例。


在下文中一共展示了torch.empty_like方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def __init__(self, pos_inds, neg_inds, bboxes, gt_bboxes, assign_result,
                 gt_flags):
        self.pos_inds = pos_inds
        self.neg_inds = neg_inds
        self.pos_bboxes = bboxes[pos_inds]
        self.neg_bboxes = bboxes[neg_inds]
        self.pos_is_gt = gt_flags[pos_inds]

        self.num_gts = gt_bboxes.shape[0]
        self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1

        if gt_bboxes.numel() == 0:
            # hack for index error case
            assert self.pos_assigned_gt_inds.numel() == 0
            self.pos_gt_bboxes = torch.empty_like(gt_bboxes).view(-1, 4)
        else:
            if len(gt_bboxes.shape) < 2:
                gt_bboxes = gt_bboxes.view(-1, 4)

            self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds, :]

        if assign_result.labels is not None:
            self.pos_gt_labels = assign_result.labels[pos_inds]
        else:
            self.pos_gt_labels = None 
开发者ID:open-mmlab,项目名称:mmdetection,代码行数:27,代码来源:sampling_result.py

示例2: tforward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def tforward(self, disp0, im, std=None):
    self.pattern = self.pattern.to(disp0.device)
    self.uv0 = self.uv0.to(disp0.device)

    uv0 = self.uv0.expand(disp0.shape[0], *self.uv0.shape[1:])
    uv1 = torch.empty_like(uv0)
    uv1[...,0] = uv0[...,0] - disp0.contiguous().view(disp0.shape[0],-1)
    uv1[...,1] = uv0[...,1]

    uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
    uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
    uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
    pattern = self.pattern.expand(disp0.shape[0], *self.pattern.shape[1:])
    pattern_proj = torch.nn.functional.grid_sample(pattern, uv1, padding_mode='border')
    mask = torch.ones_like(im)
    if std is not None:
      mask = mask*std

    diff = torchext.photometric_loss(pattern_proj.contiguous(), im.contiguous(), 9, self.loss_type, self.loss_eps)
    val = (mask*diff).sum() / mask.sum()
    return val, pattern_proj 
开发者ID:autonomousvision,项目名称:connecting_the_dots,代码行数:23,代码来源:networks.py

示例3: backward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def backward(self, grad_output):
        norm, std, weight = self.saved_tensors
        grad_weight = torch.empty_like(weight)
        grad_bias = torch.empty_like(weight)
        grad_input = torch.empty_like(grad_output)
        grad_output3d = grad_output.view(
            grad_output.size(0), grad_output.size(1), -1)
        grad_input3d = grad_input.view_as(grad_output3d)
        ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight,
                                          grad_bias)
        # all reduce
        if self.group_size > 1:
            dist.all_reduce(grad_weight, group=self.group)
            dist.all_reduce(grad_bias, group=self.group)
            grad_weight /= self.group_size
            grad_bias /= self.group_size
        ext_module.sync_bn_backward_data(grad_output3d, weight, grad_weight,
                                         grad_bias, norm, std, grad_input3d)
        return grad_input, None, None, grad_weight, grad_bias, \
            None, None, None, None 
开发者ID:open-mmlab,项目名称:mmcv,代码行数:22,代码来源:sync_bn.py

示例4: swap_swa_param

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def swap_swa_param(self):
        r"""Swaps the values of the optimized variables and swa buffers.
        It's meant to be called in the end of training to use the collected
        swa running averages. It can also be used to evaluate the running
        averages during training; to continue training `swap_swa_sgd`
        should be called again.
        """
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                if 'swa_buffer' not in param_state:
                    # If swa wasn't applied we don't swap params
                    warnings.warn(
                        "SWA wasn't applied to param {}; skipping it".format(p))
                    continue
                buf = param_state['swa_buffer']
                tmp = torch.empty_like(p.data)
                tmp.copy_(p.data)
                p.data.copy_(buf)
                buf.copy_(tmp) 
开发者ID:JDAI-CV,项目名称:fast-reid,代码行数:22,代码来源:swa.py

示例5: hard_neg_mining_loss

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def hard_neg_mining_loss(scores, labels, neg_ratio=5):

    # Flatten tensors along the spatial dimensions
    scores = scores.flatten(2, 3)
    labels = labels.flatten(2, 3)
    count = labels.size(-1)

    # Rank negative locations by the predicted confidence
    _, inds = (scores.sigmoid() * (~labels).float()).sort(-1, descending=True)
    ordinals = torch.arange(count, out=inds.new_empty(count)).expand_as(inds)
    rank = torch.empty_like(inds)
    rank.scatter_(-1, inds, ordinals)

    # Include only positive locations + N most confident negative locations
    num_pos = labels.long().sum(dim=-1, keepdim=True)
    num_neg = (num_pos + 1) * neg_ratio
    mask = (labels | (rank < num_neg)).float()

    # Apply cross entropy loss
    return F.binary_cross_entropy_with_logits(
        scores, labels.float(), mask, reduction='sum') 
开发者ID:tom-roddick,项目名称:oft,代码行数:23,代码来源:loss.py

示例6: score_partial_

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def score_partial_(self, y, next_token, state, x):
        """Score interface for both full and partial scorer.

        Args:
            y: previous char
            next_token: next token need to be score
            state: previous state
            x: encoded feature

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, n_vocab)`
                and next state list for ys.

        """
        out_state = kenlm.State()
        ys = self.chardict[y[-1]] if y.shape[0] > 1 else "<s>"
        self.lm.BaseScore(state, ys, out_state)
        scores = torch.empty_like(next_token, dtype=x.dtype, device=y.device)
        for i, j in enumerate(next_token):
            scores[i] = self.lm.BaseScore(
                out_state, self.chardict[j], self.tmpkenlmstate
            )
        return scores, out_state 
开发者ID:espnet,项目名称:espnet,代码行数:26,代码来源:ngram.py

示例7: preload

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        # if record_stream() doesn't work, another option is to make sure device inputs are created
        # on the main stream.
        # self.next_input_gpu = torch.empty_like(self.next_input, device='cuda')
        # self.next_target_gpu = torch.empty_like(self.next_target, device='cuda')
        # Need to make sure the memory allocated for next_* is not still in use by the main stream
        # at the time we start copying to next_*:
        # self.stream.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(self.stream):
            self.next_input = self.next_input.cuda(non_blocking=True)
            self.next_target = self.next_target.cuda(non_blocking=True)
            self.next_input = self.normalize(self.next_input)
            if self.is_cutout:
                self.next_input = self.cutout(self.next_input) 
开发者ID:JaminFong,项目名称:DenseNAS,代码行数:22,代码来源:prefetch_data.py

示例8: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def forward(self, inputs):
    while True:
      gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
      logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
      probs   = nn.functional.softmax(logits, dim=1)
      index   = probs.max(-1, keepdim=True)[1]
      one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0)
      hardwts = one_h - probs.detach() + probs
      if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
        continue
      else: break

    feature = self.stem(inputs)
    for i, cell in enumerate(self.cells):
      if isinstance(cell, SearchCell):
        feature = cell.forward_gdas(feature, hardwts, index)
      else:
        feature = cell(feature)
    out = self.lastact(feature)
    out = self.global_pooling( out )
    out = out.view(out.size(0), -1)
    logits = self.classifier(out)

    return out, logits 
开发者ID:D-X-Y,项目名称:AutoDL-Projects,代码行数:26,代码来源:search_model_gdas.py

示例9: select2withP

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
  if tau <= 0:
    new_logits = logits
    probs = nn.functional.softmax(new_logits, dim=1)
  else       :
    while True: # a trick to avoid the gumbels bug
      gumbels = -torch.empty_like(logits).exponential_().log()
      new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
      probs = nn.functional.softmax(new_logits, dim=1)
      if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break

  if just_prob: return probs

  #with torch.no_grad(): # add eps for unexpected torch error
  #  probs = nn.functional.softmax(new_logits, dim=1)
  #  selected_index = torch.multinomial(probs + eps, 2, False)
  with torch.no_grad(): # add eps for unexpected torch error
    probs          = probs.cpu()
    selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
  selected_logit = torch.gather(new_logits, 1, selected_index)
  selcted_probs  = nn.functional.softmax(selected_logit, dim=1)
  return selected_index, selcted_probs 
开发者ID:D-X-Y,项目名称:AutoDL-Projects,代码行数:24,代码来源:SoftSelect.py

示例10: test_fft

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def test_fft(self, backend):
        x = torch.randn(2, 2, 2)

        y = torch.empty_like(x)
        y[0, 0, :] = x[0, 0, :] + x[0, 1, :] + x[1, 0, :] + x[1, 1, :]
        y[0, 1, :] = x[0, 0, :] - x[0, 1, :] + x[1, 0, :] - x[1, 1, :]
        y[1, 0, :] = x[0, 0, :] + x[0, 1, :] - x[1, 0, :] - x[1, 1, :]
        y[1, 1, :] = x[0, 0, :] - x[0, 1, :] - x[1, 0, :] + x[1, 1, :]

        z = backend.fft(x, direction='C2C')

        assert torch.allclose(y, z)

        z = backend.fft(x, direction='C2C', inverse=True)

        z = z * 4.0

        assert torch.allclose(y, z)

        z = backend.fft(x, direction='C2R', inverse=True)

        z = z * 4.0

        assert z.shape == x.shape[:-1]
        assert torch.allclose(y[..., 0], z) 
开发者ID:kymatio,项目名称:kymatio,代码行数:27,代码来源:test_torch_scattering2d.py

示例11: swap_swa_sgd

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def swap_swa_sgd(self):
        r"""Swaps the values of the optimized variables and swa buffers.

        It's meant to be called in the end of training to use the collected
        swa running averages. It can also be used to evaluate the running
        averages during training; to continue training `swap_swa_sgd`
        should be called again.
        """
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                if 'swa_buffer' not in param_state:
                    # If swa wasn't applied we don't swap params
                    warnings.warn(
                        "SWA wasn't applied to param {}; skipping it".format(p))
                    continue
                buf = param_state['swa_buffer']
                tmp = torch.empty_like(p.data)
                tmp.copy_(p.data)
                p.data.copy_(buf)
                buf.copy_(tmp) 
开发者ID:ELEKTRONN,项目名称:elektronn3,代码行数:23,代码来源:swa.py

示例12: add_noise

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def add_noise(data: torch.Tensor, noise_type: str,
              out: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
    """
    Add noise to input

    Args:
        data: input data
        noise_type: supports all inplace functions of a pytorch tensor
        out: if provided, result is saved in here
        kwargs: keyword arguments passed to generating function

    Returns:
        torch.Tensor: data with added noise

    See Also:
        :func:`torch.Tensor.normal_`, :func:`torch.Tensor.exponential_`
    """
    if not noise_type.endswith('_'):
        noise_type = noise_type + '_'
    noise_tensor = torch.empty_like(data, requires_grad=False)
    getattr(noise_tensor, noise_type)(**kwargs)
    return torch.add(data, noise_tensor, out=out) 
开发者ID:PhoenixDL,项目名称:rising,代码行数:24,代码来源:intensity.py

示例13: forward

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def forward(self, **data) -> dict:
        """
        Args:
            data: dict with tensors

        Returns:
            dict: dict with augmented data
        """
        kwargs = {}
        for k in self.property_names:
            kwargs[k] = getattr(self, k)

        kwargs.update(self.kwargs)
        for _key in self.keys:
            out = torch.empty_like(data[_key])
            for _i in range(data[_key].shape[0]):
                out[_i] = self.augment_fn(data[_key][_i], out=out[_i], **kwargs)
            data[_key] = out
        return data 
开发者ID:PhoenixDL,项目名称:rising,代码行数:21,代码来源:abstract.py

示例14: _forward_alpha

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def _forward_alpha(self, emissions, M):
        Tt, B, Ts = emissions.size()
        alpha = utils.fill_with_neg_inf(torch.empty_like(emissions))  # Tt, B, Ts
        # initialization  t=1
        initial = torch.empty_like(alpha[0]).fill_(-math.log(Ts))  # log(1/Ts)
        # initial = utils.fill_with_neg_inf(torch.empty_like(alpha[0])) 
        # initial[:, 0] = 0
        alpha[0] = emissions[0] + initial
        # print('Initialize alpha:', alpha[0])
        # induction
        for i in range(1, Tt):
            alpha[i] = torch.logsumexp(alpha[i-1].unsqueeze(-1) + M[i-1], dim=1)
            alpha[i] = alpha[i] + emissions[i]
            # print('Emissions@', i, emissions[i])
            # print('alpha@',i, alpha[i])
        return alpha 
开发者ID:elbayadm,项目名称:attn2d,代码行数:18,代码来源:hmm_controls.py

示例15: fill_controls_emissions_grid

# 需要导入模块: import torch [as 别名]
# 或者: from torch import empty_like [as 别名]
def fill_controls_emissions_grid(self, controls, emissions, indices, src_length):
        """
        Return controls (C) and emissions (E) covering all the grid
        C : Tt, N, Ts, 2
        E : Tt, N, Ts
        """
        N = controls[0].size(0)
        tgt_length = len(controls)
        Cread = controls[0].new_zeros((tgt_length, src_length, N, 1))
        Cwrite = utils.fill_with_neg_inf(torch.empty_like(Cread))
        triu_mask = torch.triu(controls[0].new_ones(tgt_length, src_length), 1).byte()
        triu_mask = triu_mask.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, N, 1)
        Cwrite.masked_fill_(triu_mask, 0)
        C = torch.cat((Cread, Cwrite), dim=-1)
        E = utils.fill_with_neg_inf(emissions[0].new(tgt_length, src_length, N))
        for t, (subC, subE) in enumerate(zip(controls, emissions)):
            select = [indices[t]]
            C[t].index_put_(select, subC.transpose(0, 1))
            E[t].index_put_(select, subE.transpose(0, 1))
        return C.transpose(1, 2), E.transpose(1, 2) 
开发者ID:elbayadm,项目名称:attn2d,代码行数:22,代码来源:dynamic_controls.py


注:本文中的torch.empty_like方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。