当前位置: 首页>>代码示例>>Python>>正文


Python distributions.Normal方法代码示例

本文整理汇总了Python中torch.distributions.Normal方法的典型用法代码示例。如果您正苦于以下问题:Python distributions.Normal方法的具体用法?Python distributions.Normal怎么用?Python distributions.Normal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.distributions的用法示例。


在下文中一共展示了distributions.Normal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def __init__(self, hidden, a=1., scale=1.):
        """
        Implements a State Space model that's linear in the observation equation but has arbitrary dynamics in the
        state process.
        :param hidden: The hidden dynamics
        :param a: The A-matrix
        :param scale: The variance of the observations
        """

        # ===== Convoluted way to decide number of dimensions ===== #
        dim, is_1d = _get_shape(a)

        # ====== Define distributions ===== #
        n = dists.Normal(0., 1.) if is_1d else dists.Independent(dists.Normal(torch.zeros(dim), torch.ones(dim)), 1)

        if not isinstance(scale, (torch.Tensor, float, dists.Distribution)):
            raise ValueError(f'`scale` parameter must be numeric type!')

        super().__init__(hidden, a, scale, n) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:21,代码来源:linear.py

示例2: __init__

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def __init__(self, theta, initial_dist, dt, num_steps=10):
        """
        Similar as `OneFactorFractionalStochasticSIR`, but we now have two sources of randomness originating from shocks
        to both paramters `beta` and `gamma`.
        :param theta: The parameters (beta, gamma, sigma, eta)
        """

        if initial_dist.event_shape != torch.Size([3]):
            raise NotImplementedError('Must be of size 3!')

        def g(x, gamma, beta, sigma, eps):
            s = torch.zeros((*x.shape[:-1], 3, 2), device=x.device)

            s[..., 0, 0] = -sigma * x[..., 0] * x[..., 1]
            s[..., 1, 0] = -s[..., 0, 0]
            s[..., 1, 1] = -eps * x[..., 1]
            s[..., 2, 1] = -s[..., 1, 1]

            return s

        f_ = lambda u, beta, gamma, sigma, eps: f(u, beta, gamma, sigma)
        inc_dist = Independent(Normal(torch.zeros(2), math.sqrt(dt) * torch.ones(2)), 1)

        super().__init__((f_, g), theta, initial_dist, inc_dist, dt=dt, num_steps=num_steps) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:26,代码来源:sir.py

示例3: __init__

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def __init__(self, kappa, gamma, sigma, ndim: int, dt: float):
        """
        Implements the Ornstein-Uhlenbeck process.
        :param kappa: The reversion parameter
        :param gamma: The mean parameter
        :param sigma: The standard deviation
        :param ndim: The number of dimensions for the Brownian motion
        """

        def f(x: torch.Tensor, reversion: object, level: object, std: object):
            return level + (x - level) * torch.exp(-reversion * dt)

        def g(x: torch.Tensor, reversion: object, level: object, std: object):
            return std / (2 * reversion).sqrt() * (1 - torch.exp(-2 * reversion * dt)).sqrt()

        if ndim > 1:
            dist = Independent(Normal(torch.zeros(ndim), torch.ones(ndim)), 1)
        else:
            dist = Normal(0., 1)

        super().__init__((f, g), (kappa, gamma, sigma), dist, dist) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:23,代码来源:ou.py

示例4: test_SDE

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_SDE(self):
        def f(x, a, s):
            return -a * x

        def g(x, a, s):
            return s

        em = AffineEulerMaruyama((f, g), (0.02, 0.15), Normal(0., 1.), Normal(0., 1.), dt=1e-2, num_steps=10)
        model = LinearGaussianObservations(em, scale=1e-3)

        x, y = model.sample_path(500)

        for filt in [SISR(model, 500, proposal=Bootstrap()), UKF(model)]:
            filt = filt.initialize().longfilter(y)

            means = filt.result.filter_means
            if isinstance(filt, UKF):
                means = means[:, 0]

            self.assertLess(torch.std(x - means), 5e-2) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:22,代码来源:filters.py

示例5: test_StateDict

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_StateDict(self):
        # ===== Define model ===== #
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)
        linearobs = AffineObservations((fo, go), (1., 1.), norm)
        model = StateSpaceModel(linear, linearobs)

        # ===== Define filter ===== #
        filt = SISR(model, 100).initialize()

        # ===== Get statedict ===== #
        sd = filt.state_dict()

        # ===== Verify that we don't save multiple instances ===== #
        assert '_model' in sd and '_model' not in sd['_proposal']

        newfilt = SISR(model, 1000).load_state_dict(sd)
        assert newfilt._w_old is not None and newfilt.ssm is newfilt._proposal._model

        # ===== Test same with UKF and verify that we save UT ===== #
        ukf = UKF(model).initialize()
        sd = ukf.state_dict()

        assert '_model' in sd and '_model' not in sd['_ut'] 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:26,代码来源:utils.py

示例6: test_Stacker

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_Stacker(self):
        # ===== Define a mix of parameters ====== #
        zerod = Parameter(Normal(0., 1.)).sample_((1000,))
        oned_luring = Parameter(Normal(torch.tensor([0.]), torch.tensor([1.]))).sample_(zerod.shape)
        oned = Parameter(MultivariateNormal(torch.zeros(2), torch.eye(2))).sample_(zerod.shape)

        mu = torch.zeros((3, 3))
        norm = Independent(Normal(mu, torch.ones_like(mu)), 2)
        twod = Parameter(norm).sample_(zerod.shape)

        # ===== Stack ===== #
        params = (zerod, oned, oned_luring, twod)
        stacked = stacker(params, lambda u: u.t_values, dim=1)

        # ===== Verify it's recreated correctly ====== #
        for p, m, ps in zip(params, stacked.mask, stacked.prev_shape):
            v = stacked.concated[..., m]

            if len(p.c_shape) != 0:
                v = v.reshape(*v.shape[:-1], *ps)

            assert (p.t_values == v).all() 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:24,代码来源:utils.py

示例7: test_Sample

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_Sample(self):
        # ==== Hidden ==== #
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)

        # ==== Observable ===== #
        obs = AffineObservations((fo, go), (1., 0.), norm)

        # ===== Model ===== #
        mod = StateSpaceModel(linear, obs)

        # ===== Sample ===== #
        x, y = mod.sample_path(100)

        diff = ((x - y) ** 2).mean().sqrt()

        assert x.shape == y.shape and x.shape[0] == 100 and diff < 1e-3 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:19,代码来源:model.py

示例8: test_LinearBatch

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_LinearBatch(self):
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)

        # ===== Initialize ===== #
        shape = 1000, 100
        x = linear.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(linear.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = linear.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:22,代码来源:timeseries.py

示例9: test_BatchedParameter

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_BatchedParameter(self):
        norm = Normal(0., 1.)
        shape = 1000, 100

        a = torch.ones((shape[0], 1))

        init = Normal(a, 1.)
        linear = AffineProcess((f, g), (a, 1.), init, norm)

        # ===== Initialize ===== #
        x = linear.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(linear.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = linear.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:26,代码来源:timeseries.py

示例10: test_MultiDimensional

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_MultiDimensional(self):
        mu = torch.zeros(2)
        scale = torch.ones_like(mu)

        shape = 1000, 100

        mvn = Independent(Normal(mu, scale), 1)
        mvn = AffineProcess((f, g), (1., 1.), mvn, mvn)

        # ===== Initialize ===== #
        x = mvn.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(mvn.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape, *mu.shape]))

        # ===== Sample path ===== #
        path = mvn.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:26,代码来源:timeseries.py

示例11: test_SDE

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def test_SDE(self):
        shape = 1000, 100

        a = 1e-2 * torch.ones((shape[0], 1))
        dt = 0.1
        norm = Normal(0., math.sqrt(dt))

        init = Normal(a, 1.)
        sde = AffineEulerMaruyama((f_sde, g_sde), (a, 0.15), init, norm, dt=dt, num_steps=10)

        # ===== Initialize ===== #
        x = sde.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(sde.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = sde.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
开发者ID:tingiskhan,项目名称:pyfilter,代码行数:27,代码来源:timeseries.py

示例12: rsample_with_pre_tanh_value

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def rsample_with_pre_tanh_value(self, sample_shape=torch.Size()):
        """Return a sample, sampled from this TanhNormal distribution.

        Returns the sampled value before the tanh transform is applied and the
        sampled value with the tanh transform applied to it.

        Args:
            sample_shape (list): shape of the return.

        Note:
            Gradients pass through this operation.

        Returns:
            torch.Tensor: Samples from this distribution.
            torch.Tensor: Samples from the underlying
                :obj:`torch.distributions.Normal` distribution, prior to being
                transformed with `tanh`.

        """
        z = self._normal.rsample(sample_shape)
        return z, torch.tanh(z) 
开发者ID:rlworkgroup,项目名称:garage,代码行数:23,代码来源:tanh_normal.py

示例13: _from_distribution

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def _from_distribution(cls, new_normal):
        """Construct a new TanhNormal distribution from a normal distribution.

        Args:
            new_normal (Independent(Normal)): underlying normal dist for
                the new TanhNormal distribution.

        Returns:
            TanhNormal: A new distribution whose underlying normal dist
                is new_normal.

        """
        # pylint: disable=protected-access
        new = cls(torch.zeros(1), torch.zeros(1))
        new._normal = new_normal
        return new 
开发者ID:rlworkgroup,项目名称:garage,代码行数:18,代码来源:tanh_normal.py

示例14: normal_parse_params

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def normal_parse_params(params, min_sigma=0):
    """
    Take a Tensor (e. g. neural network output) and return
    torch.distributions.Normal distribution.
    This Normal distribution is component-wise independent,
    and its dimensionality depends on the input shape.
    First half of channels is mean of the distribution,
    the softplus of the second half is std (sigma), so there is
    no restrictions on the input tensor.

    min_sigma is the minimal value of sigma. I. e. if the above
    softplus is less than min_sigma, then sigma is clipped
    from below with value min_sigma. This regularization
    is required for the numerical stability and may be considered
    as a neural network architecture choice without any change
    to the probabilistic model.
    """
    n = params.shape[0]
    d = params.shape[1]
    mu = params[:, :d // 2]
    sigma_params = params[:, d // 2:]
    sigma = softplus(sigma_params)
    sigma = sigma.clamp(min=min_sigma)
    distr = Normal(mu, sigma)
    return distr 
开发者ID:tigvarts,项目名称:vaeac,代码行数:27,代码来源:prob_utils.py

示例15: __init__

# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Normal [as 别名]
def __init__(self, num_key, num_cate):
        super(Loss, self).__init__(True)
        self.num_key = num_key
        self.num_cate = num_cate

        self.oneone = Variable(torch.ones(1)).cuda()

        self.normal = tdist.Normal(torch.tensor([0.0]), torch.tensor([0.0005]))

        self.pconf = torch.ones(num_key) / num_key
        self.pconf = Variable(self.pconf).cuda()

        self.sym_axis = Variable(torch.from_numpy(np.array([0, 1, 0]).astype(np.float32))).cuda().view(1, 3, 1)
        self.threezero = Variable(torch.from_numpy(np.array([0, 0, 0]).astype(np.float32))).cuda()

        self.zeros = torch.FloatTensor([0.0 for j in range(num_key-1) for i in range(num_key)]).cuda()

        self.select1 = torch.tensor([i for j in range(num_key-1) for i in range(num_key)]).cuda()
        self.select2 = torch.tensor([(i%num_key) for j in range(1, num_key) for i in range(j, j+num_key)]).cuda()

        self.knn = KNearestNeighbor(1) 
开发者ID:j96w,项目名称:6-PACK,代码行数:23,代码来源:loss.py


注:本文中的torch.distributions.Normal方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。