本文整理汇总了Python中torch.distributions.Independent方法的典型用法代码示例。如果您正苦于以下问题:Python distributions.Independent方法的具体用法?Python distributions.Independent怎么用?Python distributions.Independent使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.distributions
的用法示例。
在下文中一共展示了distributions.Independent方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def __init__(self, hidden, a=1., scale=1.):
"""
Implements a State Space model that's linear in the observation equation but has arbitrary dynamics in the
state process.
:param hidden: The hidden dynamics
:param a: The A-matrix
:param scale: The variance of the observations
"""
# ===== Convoluted way to decide number of dimensions ===== #
dim, is_1d = _get_shape(a)
# ====== Define distributions ===== #
n = dists.Normal(0., 1.) if is_1d else dists.Independent(dists.Normal(torch.zeros(dim), torch.ones(dim)), 1)
if not isinstance(scale, (torch.Tensor, float, dists.Distribution)):
raise ValueError(f'`scale` parameter must be numeric type!')
super().__init__(hidden, a, scale, n)
示例2: __init__
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def __init__(self, theta, initial_dist, dt, num_steps=10):
"""
Similar as `OneFactorFractionalStochasticSIR`, but we now have two sources of randomness originating from shocks
to both paramters `beta` and `gamma`.
:param theta: The parameters (beta, gamma, sigma, eta)
"""
if initial_dist.event_shape != torch.Size([3]):
raise NotImplementedError('Must be of size 3!')
def g(x, gamma, beta, sigma, eps):
s = torch.zeros((*x.shape[:-1], 3, 2), device=x.device)
s[..., 0, 0] = -sigma * x[..., 0] * x[..., 1]
s[..., 1, 0] = -s[..., 0, 0]
s[..., 1, 1] = -eps * x[..., 1]
s[..., 2, 1] = -s[..., 1, 1]
return s
f_ = lambda u, beta, gamma, sigma, eps: f(u, beta, gamma, sigma)
inc_dist = Independent(Normal(torch.zeros(2), math.sqrt(dt) * torch.ones(2)), 1)
super().__init__((f_, g), theta, initial_dist, inc_dist, dt=dt, num_steps=num_steps)
示例3: __init__
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def __init__(self, kappa, gamma, sigma, ndim: int, dt: float):
"""
Implements the Ornstein-Uhlenbeck process.
:param kappa: The reversion parameter
:param gamma: The mean parameter
:param sigma: The standard deviation
:param ndim: The number of dimensions for the Brownian motion
"""
def f(x: torch.Tensor, reversion: object, level: object, std: object):
return level + (x - level) * torch.exp(-reversion * dt)
def g(x: torch.Tensor, reversion: object, level: object, std: object):
return std / (2 * reversion).sqrt() * (1 - torch.exp(-2 * reversion * dt)).sqrt()
if ndim > 1:
dist = Independent(Normal(torch.zeros(ndim), torch.ones(ndim)), 1)
else:
dist = Normal(0., 1)
super().__init__((f, g), (kappa, gamma, sigma), dist, dist)
示例4: test_MultiDimensional
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def test_MultiDimensional(self):
mu = torch.zeros(2)
scale = torch.ones_like(mu)
shape = 1000, 100
mvn = Independent(Normal(mu, scale), 1)
mvn = AffineProcess((f, g), (1., 1.), mvn, mvn)
# ===== Initialize ===== #
x = mvn.i_sample(shape)
# ===== Propagate ===== #
num = 100
samps = [x]
for t in range(num):
samps.append(mvn.propagate(samps[-1]))
samps = torch.stack(samps)
self.assertEqual(samps.size(), torch.Size([num + 1, *shape, *mu.shape]))
# ===== Sample path ===== #
path = mvn.sample_path(num + 1, shape)
self.assertEqual(samps.shape, path.shape)
示例5: forward
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def forward(self, input, params=None):
if params is None:
params = OrderedDict(self.named_parameters())
output = input
for i in range(1, self.num_layers):
output = F.linear(output,
weight=params['layer{0}.weight'.format(i)],
bias=params['layer{0}.bias'.format(i)])
output = self.nonlinearity(output)
mu = F.linear(output,
weight=params['mu.weight'],
bias=params['mu.bias'])
scale = torch.exp(torch.clamp(params['sigma'], min=self.min_log_std))
return Independent(Normal(loc=mu, scale=scale), 1)
示例6: dist
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def dist(self):
return Independent(Normal(self._mean, self._log_std.exp()), self._model.ndim + 1)
示例7: __init__
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def __init__(self, std: Union[torch.Tensor, float, Distribution]):
"""
Defines a random walk.
:param std: The vector of standard deviations
:type std: torch.Tensor|float|Distribution
"""
if not isinstance(std, torch.Tensor):
normal = Normal(0., 1.)
else:
normal = Normal(0., 1.) if std.shape[-1] < 2 else Independent(Normal(torch.zeros_like(std), std), 1)
super().__init__((_f, _g), (std,), normal, normal)
示例8: prop_state
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def prop_state(x, beta, gamma, eta, dt):
f = _f(x, beta, gamma, eta, dt)
bins = Independent(Binomial(x[..., :-1], f), 1)
samp = bins.sample()
s = x[..., 0] - samp[..., 0]
i = x[..., 1] + samp[..., 0] - samp[..., 1]
r = x[..., 2] + samp[..., 1]
return concater(s, i, r)
示例9: construct
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def construct(self, y, x):
# ===== Mean of propagated dist ===== #
h_loc, h_scale = self._model.hidden.mean_scale(x)
h_loc.requires_grad_(True)
# ===== Get gradients ===== #
logl = self._model.observable.log_prob(y, h_loc) + self._model.hidden.log_prob(h_loc, x)
g = grad(logl, h_loc, grad_outputs=torch.ones_like(logl), create_graph=self._alpha is None)[-1]
# ===== Define mean and scale ===== #
if self._alpha is None:
step = -1 / grad(g, h_loc, grad_outputs=torch.ones_like(g))[-1]
std = step.sqrt()
else:
std = h_scale.detach()
step = self._alpha
mean = h_loc.detach() + step * g.detach()
x.detach_()
if self._model.hidden_ndim == 0:
self._kernel = Normal(mean, std)
else:
self._kernel = Independent(Normal(mean, std), self._model.hidden_ndim)
return self
示例10: test_StochasticSIR
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def test_StochasticSIR(self):
dist = Independent(Binomial(torch.tensor([1000, 1, 0]), torch.tensor([1, 1, 1e-6])), 1)
sir = m.StochasticSIR((0.1, 0.05, 0.01), dist, 1e-1)
x = sir.sample_path(1000, 10)
self.assertEqual(x.shape, torch.Size([1000, 10, 3]))
示例11: forward
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def forward(self, input, segm=None):
#If segmentation is not none, concatenate the mask to the channel axis of the input
if segm is not None:
self.show_img = input
self.show_seg = segm
input = torch.cat((input, segm), dim=1)
self.show_concat = input
self.sum_input = torch.sum(input)
encoding = self.encoder(input)
self.show_enc = encoding
#We only want the mean of the resulting hxw image
encoding = torch.mean(encoding, dim=2, keepdim=True)
encoding = torch.mean(encoding, dim=3, keepdim=True)
#Convert encoding to 2 x latent dim and split up for mu and log_sigma
mu_log_sigma = self.conv_layer(encoding)
#We squeeze the second dimension twice, since otherwise it won't work when batch size is equal to 1
mu_log_sigma = torch.squeeze(mu_log_sigma, dim=2)
mu_log_sigma = torch.squeeze(mu_log_sigma, dim=2)
mu = mu_log_sigma[:,:self.latent_dim]
log_sigma = mu_log_sigma[:,self.latent_dim:]
#This is a multivariate normal with diagonal covariance matrix sigma
#https://github.com/pytorch/pytorch/pull/11178
dist = Independent(Normal(loc=mu, scale=torch.exp(log_sigma)),1)
return dist
示例12: gaussian_log_likelihood
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def gaussian_log_likelihood(mu_2d, data_2d, obsrv_std, indices = None):
n_data_points = mu_2d.size()[-1]
if n_data_points > 0:
gaussian = Independent(Normal(loc = mu_2d, scale = obsrv_std.repeat(n_data_points)), 1)
log_prob = gaussian.log_prob(data_2d)
log_prob = log_prob / n_data_points
else:
log_prob = torch.zeros([1]).to(get_device(data_2d)).squeeze()
return log_prob
示例13: detach_distribution
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def detach_distribution(pi):
if isinstance(pi, Independent):
distribution = Independent(detach_distribution(pi.base_dist),
pi.reinterpreted_batch_ndims)
elif isinstance(pi, Categorical):
distribution = Categorical(logits=pi.logits.detach())
elif isinstance(pi, Normal):
distribution = Normal(loc=pi.loc.detach(), scale=pi.scale.detach())
else:
raise NotImplementedError('Only `Categorical`, `Independent` and '
'`Normal` policies are valid policies. Got '
'`{0}`.'.format(type(pi)))
return distribution
示例14: MultivariateNormalDiag
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def MultivariateNormalDiag(loc, scale_diag):
if loc.dim() < 1:
raise ValueError("loc must be at least one-dimensional.")
return Independent(Normal(loc, scale_diag), 1)
示例15: test_Inference
# 需要导入模块: from torch import distributions [as 别名]
# 或者: from torch.distributions import Independent [as 别名]
def test_Inference(self):
# ===== Distributions ===== #
dist = Normal(0., 1.)
mvn = Independent(Normal(torch.zeros(2), torch.ones(2)), 1)
# ===== Define model ===== #
linear = AffineProcess((f, g), (1., 0.25), dist, dist)
model = LinearGaussianObservations(linear, scale=0.1)
mv_linear = AffineProcess((fmvn, gmvn), (0.5, 0.25), mvn, mvn)
mvnmodel = LinearGaussianObservations(mv_linear, torch.eye(2), scale=0.1)
# ===== Test for multiple models ===== #
priors = Exponential(1.), LogNormal(0., 1.)
hidden1d = AffineProcess((f, g), priors, dist, dist)
oned = LinearGaussianObservations(hidden1d, 1., scale=0.1)
hidden2d = AffineProcess((fmvn, gmvn), priors, mvn, mvn)
twod = LinearGaussianObservations(hidden2d, torch.eye(2), scale=0.1 * torch.ones(2))
particles = 1000
# ====== Run inference ===== #
for trumod, model in [(model, oned), (mvnmodel, twod)]:
x, y = trumod.sample_path(1000)
algs = [
(NESS, {'particles': particles, 'filter_': APF(model.copy(), 200)}),
(NESS, {'particles': particles, 'filter_': UKF(model.copy())}),
(SMC2, {'particles': particles, 'filter_': APF(model.copy(), 200)}),
(SMC2FW, {'particles': particles, 'filter_': APF(model.copy(), 200)}),
(NESSMC2, {'particles': particles, 'filter_': APF(model.copy(), 200)})
]
for alg, props in algs:
alg = alg(**props).initialize()
alg = alg.fit(y)
w = normalize(alg._w_rec if hasattr(alg, '_w_rec') else torch.ones(particles))
tru_params = trumod.hidden.theta._cont + trumod.observable.theta._cont
inf_params = alg.filter.ssm.hidden.theta._cont + alg.filter.ssm.observable.theta._cont
for trup, p in zip(tru_params, inf_params):
if not p.trainable:
continue
kde = p.get_kde(weights=w)
transed = p.bijection.inv(trup)
densval = kde.logpdf(transed.numpy().reshape(-1, 1))
priorval = p.distr.log_prob(trup)
assert (densval > priorval.numpy()).all()