本文整理汇总了Python中torch.distributed.all_reduce方法的典型用法代码示例。如果您正苦于以下问题:Python distributed.all_reduce方法的具体用法?Python distributed.all_reduce怎么用?Python distributed.all_reduce使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.distributed
的用法示例。
在下文中一共展示了distributed.all_reduce方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: backward
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def backward(ctx, grad_mean_out, grad_cov_out):
in_data, mean_bn = ctx.saved_tensors
if ctx.training:
dist.all_reduce(grad_mean_out)
dist.all_reduce(grad_cov_out)
world_size = dist.get_world_size()
else:
world_size = 1
grad_cov_out = (grad_cov_out + grad_cov_out.transpose(1, 2)) / 2
grad_cov_in = 2 * torch.bmm(grad_cov_out, (in_data - mean_bn)) \
/ (ctx.NHW*world_size) # g x c x (N x H x W)
grad_mean_in = grad_mean_out / ctx.NHW / world_size
inDiff = grad_mean_in + grad_cov_in
return inDiff, None, None, None, None
示例2: _allreduce_coalesced
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1):
if bucket_size_mb > 0:
bucket_size_bytes = bucket_size_mb * 1024 * 1024
buckets = _take_tensors(tensors, bucket_size_bytes)
else:
buckets = OrderedDict()
for tensor in tensors:
tp = tensor.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(tensor)
buckets = buckets.values()
for bucket in buckets:
flat_tensors = _flatten_dense_tensors(bucket)
dist.all_reduce(flat_tensors)
flat_tensors.div_(world_size)
for tensor, synced in zip(
bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
tensor.copy_(synced)
示例3: allreduce_grads
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def allreduce_grads(params, coalesce=True, bucket_size_mb=-1):
"""Allreduce gradients.
Args:
params (list[torch.Parameters]): List of parameters of a model
coalesce (bool, optional): Whether allreduce parameters as a whole.
Defaults to True.
bucket_size_mb (int, optional): Size of bucket, the unit is MB.
Defaults to -1.
"""
grads = [
param.grad.data for param in params
if param.requires_grad and param.grad is not None
]
world_size = dist.get_world_size()
if coalesce:
_allreduce_coalesced(grads, world_size, bucket_size_mb)
else:
for tensor in grads:
dist.all_reduce(tensor.div_(world_size))
示例4: _all_reduce_coalesced
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def _all_reduce_coalesced(tensors, world_size, bucket_size_mb=-1):
if bucket_size_mb > 0:
bucket_size_bytes = bucket_size_mb * 1024 * 1024
buckets = _take_tensors(tensors, bucket_size_bytes)
else:
buckets = OrderedDict()
for tensor in tensors:
tp = tensor.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(tensor)
buckets = buckets.values()
for bucket in buckets:
flat_tensors = _flatten_dense_tensors(bucket)
dist.all_reduce(flat_tensors)
flat_tensors.div_(world_size)
for tensor, synced in zip(
bucket, _unflatten_dense_tensors(flat_tensors, bucket)):
tensor.copy_(synced)
示例5: reduce_dict
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
示例6: process_generic_model
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def process_generic_model(params: List, iters: int, has_early_stop: bool = False):
"""
Runs a mock training with zero grads. This is due to a bug where the connection gets reset with custom new groups.
:param params: The params of the model
:param iters: Iterations.
"""
# Hopefully this function can go away in newer versions.
for i in range(iters):
for p in params:
z = torch.zeros(p)
dist.all_reduce(z, op=torch.distributed.ReduceOp.SUM)
if has_early_stop:
dist.all_reduce(torch.tensor(0.0), op=torch.distributed.ReduceOp.SUM)
zeros = torch.zeros(1)
dist.all_reduce(zeros, op=torch.distributed.ReduceOp.SUM)
if zeros.item() > 0:
break
示例7: average_across_processes
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def average_across_processes(t: Union[torch.Tensor, Dict[str, torch.Tensor]]):
r"""
Averages a tensor, or a dict of tensors across all processes in a process
group. Objects in all processes will finally have same mean value.
.. note::
Nested dicts of tensors are not supported.
Parameters
----------
t: torch.Tensor or Dict[str, torch.Tensor]
A tensor or dict of tensors to average across processes.
"""
if dist.is_initialized():
if isinstance(t, torch.Tensor):
dist.all_reduce(t, op=dist.ReduceOp.SUM)
t /= get_world_size()
elif isinstance(t, dict):
for k in t:
dist.all_reduce(t[k], op=dist.ReduceOp.SUM)
t[k] /= dist.get_world_size()
示例8: step
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def step(self, loss):
self.optimizer.zero_grad()
loss.backward()
dist.barrier()
handles = []
for param in self.network.parameters():
handles.append(dist.all_reduce(param.grad, async_op=True))
for handle in handles:
handle.wait()
if self.divide_grad:
for param in self.network.parameters():
param.grad.mul_(1.0 / self.world_sz)
if self.grad_norm_clip:
nn.utils.clip_grad_norm_(
self.network.parameters(), self.grad_norm_clip
)
self.optimizer.step()
示例9: step
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def step(self):
print(f"learner {self.rank} step")
# make sure exp_handles are done
for handle in self.exp_handles:
handle.wait()
# batch together exp
time.sleep(random.randint(0, 3))
# update with other learners
dist.barrier(self.learner_group)
for p in self.network_grads:
dist.all_reduce(p, group=self.learner_group)
print(f"learner {self.rank} shared gradients")
return True
示例10: backward
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def backward(self, grad_output):
norm, std, weight = self.saved_tensors
grad_weight = torch.empty_like(weight)
grad_bias = torch.empty_like(weight)
grad_input = torch.empty_like(grad_output)
grad_output3d = grad_output.view(
grad_output.size(0), grad_output.size(1), -1)
grad_input3d = grad_input.view_as(grad_output3d)
ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight,
grad_bias)
# all reduce
if self.group_size > 1:
dist.all_reduce(grad_weight, group=self.group)
dist.all_reduce(grad_bias, group=self.group)
grad_weight /= self.group_size
grad_bias /= self.group_size
ext_module.sync_bn_backward_data(grad_output3d, weight, grad_weight,
grad_bias, norm, std, grad_input3d)
return grad_input, None, None, grad_weight, grad_bias, \
None, None, None, None
示例11: all_reduce
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def all_reduce(self, input, op=ReduceOp.SUM, batched=False):
"""Reduces the input data across all parties; all get the final result."""
assert dist.is_initialized(), "initialize the communicator first"
if batched:
assert isinstance(input, list), "batched reduce input must be a list"
reqs = []
result = [x.clone() for x in input]
for tensor in result:
reqs.append(
dist.all_reduce(
tensor.data, op=op, group=self.main_group, async_op=True
)
)
for req in reqs:
req.wait()
else:
assert torch.is_tensor(
input.data
), "unbatched input for reduce must be a torch tensor"
result = input.clone()
dist.all_reduce(result.data, op=op, group=self.main_group)
return result
示例12: reduce_mean
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def reduce_mean(tensor):
if not (dist.is_available() and dist.is_initialized()):
return tensor
tensor = tensor.clone()
dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM)
return tensor
示例13: _parse_losses
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def _parse_losses(self, losses):
"""Parse the raw outputs (losses) of the network.
Args:
losses (dict): Raw output of the network, which usually contain
losses and other necessary infomation.
Returns:
tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor
which may be a weighted sum of all losses, log_vars contains
all the variables to be sent to the logger.
"""
log_vars = OrderedDict()
for loss_name, loss_value in losses.items():
if isinstance(loss_value, torch.Tensor):
log_vars[loss_name] = loss_value.mean()
elif isinstance(loss_value, list):
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
else:
raise TypeError(
f'{loss_name} is not a tensor or list of tensors')
loss = sum(_value for _key, _value in log_vars.items()
if 'loss' in _key)
log_vars['loss'] = loss
for loss_name, loss_value in log_vars.items():
# reduce loss when distributed training
if dist.is_available() and dist.is_initialized():
loss_value = loss_value.data.clone()
dist.all_reduce(loss_value.div_(dist.get_world_size()))
log_vars[loss_name] = loss_value.item()
return loss, log_vars
示例14: average_gradients
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def average_gradients(model):
""" Gradient averaging. """
size = float(dist.get_world_size())
for name, param in model.named_parameters():
try:
dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM)
param.grad.data /= size
except Exception as e:
logger.error('Error when all_reduce parameter {}, size={}, grad_type={}, error message {}'.format(
name, param.size(), param.grad.data.dtype, repr(e)
))
示例15: all_reduce_tensor
# 需要导入模块: from torch import distributed [as 别名]
# 或者: from torch.distributed import all_reduce [as 别名]
def all_reduce_tensor(tensor, op=dist.ReduceOp.SUM, world_size=1):
tensor = tensor.clone()
dist.all_reduce(tensor, op)
tensor.div_(world_size)
return tensor