本文整理汇总了Python中torch.cumprod方法的典型用法代码示例。如果您正苦于以下问题:Python torch.cumprod方法的具体用法?Python torch.cumprod怎么用?Python torch.cumprod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.cumprod方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: exclusive_cumprod
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def exclusive_cumprod(tensor, dim: int, eps: float = 1e-10):
"""
Implementing exclusive cumprod.
There is cumprod in pytorch, however there is no exclusive mode.
cumprod(x) = [x1, x1x2, x2x3x4, ..., prod_{i=1}^n x_i]
exclusive means cumprod(x) = [1, x1, x1x2, x1x2x3, ..., prod_{i=1}^{n-1} x_i]
"""
tensor_size = list(tensor.size())
tensor_size[dim] = 1
return_tensor = safe_cumprod(
torch.cat([torch.ones(tensor_size).type_as(tensor), tensor], dim=dim), dim=dim, eps=eps
)
if dim == 0:
return return_tensor[:-1]
elif dim == 1:
return return_tensor[:, :-1]
elif dim == 2:
return return_tensor[:, :, :-1]
else:
raise RuntimeError("Cumprod on dimension 3 and more is not implemented")
示例2: safe_cumprod
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def safe_cumprod(tensor, dim: int, eps: float = 1e-10):
"""
An implementation of cumprod to prevent precision issue.
cumprod(x)
= [x1, x1x2, x1x2x3, ....]
= [exp(log(x1)), exp(log(x1) + log(x2)), exp(log(x1) + log(x2) + log(x3)), ...]
= exp(cumsum(log(x)))
"""
if (tensor + eps < 0).any().item():
raise RuntimeError(
"Safe cumprod can only take non-negative tensors as input."
"Consider use torch.cumprod if you want to calculate negative values."
)
log_tensor = torch.log(tensor + eps)
cumsum_log_tensor = torch.cumsum(log_tensor, dim)
exp_cumsum_log_tensor = torch.exp(cumsum_log_tensor)
return exp_cumsum_log_tensor
示例3: fake_cumprod
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def fake_cumprod(vb):
"""
args:
vb: [hei x wid]
-> NOTE: we are lazy here so now it only supports cumprod along wid
"""
# real_cumprod = torch.cumprod(vb.data, 1)
vb = vb.unsqueeze(0)
mul_mask_vb = Variable(torch.zeros(vb.size(2), vb.size(1), vb.size(2))).type_as(vb)
for i in range(vb.size(2)):
mul_mask_vb[i, :, :i+1] = 1
add_mask_vb = 1 - mul_mask_vb
vb = vb.expand_as(mul_mask_vb) * mul_mask_vb + add_mask_vb
# vb = torch.prod(vb, 2).transpose(0, 2) # 0.1.12
vb = torch.prod(vb, 2, keepdim=True).transpose(0, 2) # 0.2.0
# print(real_cumprod - vb.data) # NOTE: checked, ==0
return vb
示例4: allocate
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def allocate(self, usage, write_gate):
# ensure values are not too small prior to cumprod.
usage = δ + (1 - δ) * usage
batch_size = usage.size(0)
# free list
sorted_usage, φ = T.topk(usage, self.mem_size, dim=1, largest=False)
# cumprod with exclusive=True
# https://discuss.pytorch.org/t/cumprod-exclusive-true-equivalences/2614/8
v = var(sorted_usage.data.new(batch_size, 1).fill_(1))
cat_sorted_usage = T.cat((v, sorted_usage), 1)
prod_sorted_usage = T.cumprod(cat_sorted_usage, 1)[:, :-1]
sorted_allocation_weights = (1 - sorted_usage) * prod_sorted_usage.squeeze()
# construct the reverse sorting index https://stackoverflow.com/questions/2483696/undo-or-reverse-argsort-python
_, φ_rev = T.topk(φ, k=self.mem_size, dim=1, largest=False)
allocation_weights = sorted_allocation_weights.gather(1, φ_rev.long())
return allocation_weights.unsqueeze(1), usage
示例5: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def forward(self, c):
self.eval += 1
fx = torch.mean(self.sigmod(self.x), 1)
# fx = self.nc - torch.sum(c * xx, 0) # onemax like
fx = self.nc - torch.cumprod(c * fx, 0).sum() # leading ones like
fx += 1e-8 * torch.sum(self.x ** 2)
return fx, fx
示例6: dice_objective
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def dice_objective(self):
self_logprobs = torch.stack(self.self_logprobs, dim=1)
other_logprobs = torch.stack(self.other_logprobs, dim=1)
values = torch.stack(self.values, dim=1)
rewards = torch.stack(self.rewards, dim=1)
# apply discount:
cum_discount = torch.cumprod(hp.gamma * torch.ones(*rewards.size()), dim=1)/hp.gamma
discounted_rewards = rewards * cum_discount
discounted_values = values * cum_discount
# stochastics nodes involved in rewards dependencies:
dependencies = torch.cumsum(self_logprobs + other_logprobs, dim=1)
# logprob of each stochastic nodes:
stochastic_nodes = self_logprobs + other_logprobs
# dice objective:
dice_objective = torch.mean(torch.sum(magic_box(dependencies) * discounted_rewards, dim=1))
if hp.use_baseline:
# variance_reduction:
baseline_term = torch.mean(torch.sum((1 - magic_box(stochastic_nodes)) * discounted_values, dim=1))
dice_objective = dice_objective + baseline_term
return -dice_objective # want to minimize -objective
示例7: _allocation
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def _allocation(self, usage_vb, epsilon=1e-6):
"""
computes allocation by sorting usage, a = a_t[\phi_t[j]]
variables needed:
usage_vb: [batch_size x mem_hei]
-> indicating current memory usage, this is equal to u_t in
the paper when we only have one write head, but for
multiple write heads, one should update the usage while
iterating through the write heads to take into account the
allocation returned by this function
returns:
alloc_vb: [batch_size x num_write_heads x mem_hei]
"""
# ensure values are not too small prior to cumprod
usage_vb = epsilon + (1 - epsilon) * usage_vb
# NOTE: we sort usage in ascending order
sorted_usage_vb, indices_vb = torch.topk(usage_vb, k=self.mem_hei, dim=1, largest=False)
# to imitate tf.cumrprod(exclusive=True) https://discuss.pytorch.org/t/cumprod-exclusive-true-equivalences/2614/8
cat_sorted_usage_vb = torch.cat((Variable(torch.ones(self.batch_size, 1)).type(self.dtype), sorted_usage_vb), 1)[:, :-1]
# TODO: seems we have to wait for this PR: https://github.com/pytorch/pytorch/pull/1439
prod_sorted_usage_vb = fake_cumprod(cat_sorted_usage_vb)
# prod_sorted_usage_vb = torch.cumprod(cat_sorted_usage_vb, dim=1) # TODO: use this once the PR is ready
# alloc_weight_vb = (1 - sorted_usage_vb) * prod_sorted_usage_vb # equ. (1) # 0.1.12
alloc_weight_vb = (1 - sorted_usage_vb) * prod_sorted_usage_vb.squeeze() # equ. (1) # 0.2.0
_, indices_vb = torch.topk(indices_vb, k=self.mem_hei, dim=1, largest=False)
alloc_weight_vb = alloc_weight_vb.gather(1, indices_vb)
return alloc_weight_vb
示例8: exclusive_cumprod
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def exclusive_cumprod(x):
"""Exclusive cumulative product [a, b, c] => [1, a, a * b].
Args:
x (FloatTensor): `[B, H, qlen, klen]`
Returns:
x (FloatTensor): `[B, H, qlen, klen]`
"""
return torch.cumprod(torch.cat([x.new_ones(x.size(0), x.size(1), x.size(2), 1),
x[:, :, :, :-1]], dim=-1), dim=-1)
示例9: cumprod
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def cumprod(a, axis, dtype=None, out=None):
"""
Return the cumulative product of elements along a given axis.
Parameters
----------
a : DNDarray
Input array.
axis : int
Axis along which the cumulative product is computed.
dtype : dtype, optional
Type of the returned array, as well as of the accumulator in which
the elements are multiplied. If *dtype* is not specified, it
defaults to the dtype of `a`, unless `a` has an integer dtype with
a precision less than that of the default platform integer. In
that case, the default platform integer is used instead.
out : DNDarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.
Returns
-------
cumprod : DNDarray
A new array holding the result is returned unless `out` is
specified, in which case a reference to out is returned.
Examples
--------
>>> a = ht.full((3,3), 2)
>>> ht.cumprod(a, 0)
tensor([[2., 2., 2.],
[4., 4., 4.],
[8., 8., 8.])
"""
return operations.__cum_op(a, torch.cumprod, MPI.PROD, torch.mul, 1, axis, dtype, out)
# Alias support
示例10: tor_err_at_ks
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def tor_err_at_ks(sys_sorted_labels, ks=None, multi_level_rele=True, max_rele_level=None):
'''
:param sys_sorted_labels: the standard labels sorted in descending order according to predicted relevance scores
:param ks:
:param multi_level_rele:
:param max_rele_level:
:return:
'''
valid_max = sys_sorted_labels.size(0)
used_ks = [k for k in ks if k <= valid_max] if valid_max < max(ks) else ks
max_cutoff = max(used_ks)
inds = torch.from_numpy(np.asarray(used_ks) - 1)
if multi_level_rele:
positions = torch.arange(max_cutoff) + 1.0
expt_ranks = 1.0 / positions # expected stop positions
tor_max_rele = torch.Tensor([max_rele_level]).float()
satis_pros = (torch.pow(2.0, sys_sorted_labels[0:max_cutoff]) - 1.0)/torch.pow(2.0, tor_max_rele)
non_satis_pros = torch.ones(max_cutoff) - satis_pros
cum_non_satis_pros = torch.cumprod(non_satis_pros, dim=0)
cascad_non_satis_pros = positions
cascad_non_satis_pros[1:max_cutoff] = cum_non_satis_pros[0:max_cutoff-1]
expt_satis_ranks = expt_ranks * satis_pros * cascad_non_satis_pros # w.r.t. all rank positions
err_at_ranks = torch.cumsum(expt_satis_ranks, dim=0)
err_at_ks = err_at_ranks[inds]
if valid_max < max(ks):
padded_err_at_ks = torch.zeros(len(ks))
padded_err_at_ks[0:len(used_ks)] = err_at_ks
return padded_err_at_ks
else:
return err_at_ks
else:
raise NotImplementedError
示例11: torch_ideal_err
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def torch_ideal_err(sorted_labels, k=10, point=True, gpu=False):
assert sorted_labels.size(0) >= k
max_label = torch.max(sorted_labels)
labels = sorted_labels[0:k]
satis_pros = (torch.pow(2.0, labels) - 1.0) / torch.pow(2.0, max_label)
unsatis_pros = torch.ones_like(labels) - satis_pros
cum_unsatis_pros = torch.cumprod(unsatis_pros, dim=0)
if gpu:
ranks = torch.arange(k).type(tensor) + 1.0
expt_ranks = 1.0 / ranks
else:
ranks = torch.arange(k) + 1.0
expt_ranks = 1.0 / ranks
cascad_unsatis_pros = ranks
cascad_unsatis_pros[1:k] = cum_unsatis_pros[0:k-1]
expt_satis_ranks = expt_ranks * satis_pros * cascad_unsatis_pros # w.r.t. all rank positions
if point: # a specific position
ideal_err = torch.sum(expt_satis_ranks, dim=0)
return ideal_err
else:
ideal_err_at_ks = torch.cumsum(expt_satis_ranks, dim=0)
return ideal_err_at_ks
示例12: torch_batch_ideal_err
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def torch_batch_ideal_err(batch_sorted_labels, k=10, gpu=False, point=True):
assert batch_sorted_labels.size(1) > k
batch_max = torch.max(batch_sorted_labels, dim=1)
batch_labels = batch_sorted_labels[:, 0:k]
batch_satis_pros = (torch.pow(2.0, batch_labels) - 1.0) / torch.pow(2.0, batch_max)
batch_unsatis_pros = torch.ones(batch_labels) - batch_satis_pros
batch_cum_unsatis_pros = torch.cumprod(batch_unsatis_pros, dim=1)
positions = torch.arange(k) + 1.0
positions = positions.view(1, -1)
positions = torch.repeat_interleave(positions, batch_sorted_labels.size(0), dim=0)
batch_expt_ranks = 1.0 / positions
cascad_unsatis_pros = positions
cascad_unsatis_pros[:, 1:k] = batch_cum_unsatis_pros[:, 0:k-1]
expt_satis_ranks = batch_expt_ranks * batch_satis_pros * cascad_unsatis_pros # w.r.t. all rank positions
if point:
batch_errs = torch.sum(expt_satis_ranks, dim=1)
return batch_errs
else:
batch_err_at_ks = torch.cumsum(expt_satis_ranks, dim=1)
return batch_err_at_ks
示例13: torch_nerr_at_ks
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def torch_nerr_at_ks(sys_sorted_labels, ideal_sorted_labels, ks=None, multi_level_rele=True):
'''
:param sys_sorted_labels: the standard labels sorted in descending order according to predicted relevance scores
:param ks:
:param multi_level_rele:
:return:
'''
valid_max = sys_sorted_labels.size(0)
used_ks = [k for k in ks if k <= valid_max] if valid_max < max(ks) else ks
max_cutoff = max(used_ks)
inds = torch.from_numpy(np.asarray(used_ks) - 1)
if multi_level_rele:
positions = torch.arange(max_cutoff) + 1.0
expt_ranks = 1.0 / positions # expected stop positions
tor_max_rele = torch.max(sys_sorted_labels)
satis_pros = (torch.pow(2.0, sys_sorted_labels[0:max_cutoff]) - 1.0)/torch.pow(2.0, tor_max_rele)
non_satis_pros = torch.ones(max_cutoff) - satis_pros
cum_non_satis_pros = torch.cumprod(non_satis_pros, dim=0)
cascad_non_satis_pros = positions
cascad_non_satis_pros[1:max_cutoff] = cum_non_satis_pros[0:max_cutoff-1]
expt_satis_ranks = expt_ranks * satis_pros * cascad_non_satis_pros # w.r.t. all rank positions
err_at_ks = torch.cumsum(expt_satis_ranks, dim=0)
#print(err_at_ks)
ideal_err_at_ks = torch_ideal_err(ideal_sorted_labels, k=max_cutoff, point=False)
tmp_nerr_at_ks = err_at_ks/ideal_err_at_ks
nerr_at_ks = tmp_nerr_at_ks[inds]
if valid_max < max(ks):
padded_nerr_at_ks = torch.zeros(len(ks))
padded_nerr_at_ks[0:len(used_ks)] = nerr_at_ks
return padded_nerr_at_ks
else:
return nerr_at_ks
else:
raise NotImplementedError
示例14: __call__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def __call__(self, x):
'''
Evaluates E_S[softmax_{customers} min_{i \in S} dist(customer, i)] where
the expectation is over the set of facility locations S. Every
location is included in S independently with probability x_i.
'''
x_sort = x[self.order]
probs = 1 - torch.cumprod(1 - x_sort, dim=1)
vals = self.dmax + (self.m*probs).sum(dim=1)
if self.hardmax:
return vals.max()
weights = torch.softmax(self.temp*vals, dim=0)
return torch.dot(vals, weights)
示例15: forward
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cumprod [as 别名]
def forward(self, emb, parser_state):
emb_last, cum_gate = parser_state
ntimestep = emb.size(0)
emb_last = torch.cat([emb_last, emb], dim=0)
emb = emb_last.transpose(0, 1).transpose(1, 2) # bsz, ninp, ntimestep + nlookback
gates = self.gate(emb) # bsz, 2, ntimestep
gate = gates[:, 0, :]
gate_next = gates[:, 1, :]
cum_gate = torch.cat([cum_gate, gate], dim=1)
gate_hat = torch.stack([cum_gate[:, i:i + ntimestep] for i in range(self.nslots, 0, -1)],
dim=2) # bsz, ntimestep, nslots
if self.hard:
memory_gate = (F.hardtanh((gate[:, :, None] - gate_hat) / self.resolution * 2 + 1) + 1) / 2
else:
memory_gate = F.sigmoid(
(gate[:, :, None] - gate_hat) / self.resolution * 10 + 5) # bsz, ntimestep, nslots
memory_gate = torch.cumprod(memory_gate, dim=2) # bsz, ntimestep, nlookback+1
memory_gate = torch.unbind(memory_gate, dim=1)
if self.hard:
memory_gate_next = (F.hardtanh((gate_next[:, :, None] - gate_hat) / self.resolution * 2 + 1) + 1) / 2
else:
memory_gate_next = F.sigmoid(
(gate_next[:, :, None] - gate_hat) / self.resolution * 10 + 5) # bsz, ntimestep, nslots
memory_gate_next = torch.cumprod(memory_gate_next, dim=2) # bsz, ntimestep, nlookback+1
memory_gate_next = torch.unbind(memory_gate_next, dim=1)
return (memory_gate, memory_gate_next), gate, (emb_last[-self.nlookback:], cum_gate[:, -self.nslots:])