本文整理汇总了Python中torch.cuda.LongTensor方法的典型用法代码示例。如果您正苦于以下问题:Python cuda.LongTensor方法的具体用法?Python cuda.LongTensor怎么用?Python cuda.LongTensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.cuda
的用法示例。
在下文中一共展示了cuda.LongTensor方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: interpolation
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def interpolation(self, uvm, image, index):
u, v = torch.index_select(uvm, dim=1, index=LongTensor([0+3*index,
1+3*index])).permute(0, 2, 3, 1).split(1, dim=3)
row_num = FloatTensor()
col_num = FloatTensor()
im_size = image.shape[2:4]
torch.arange(im_size[0], out=row_num)
torch.arange(im_size[1], out=col_num)
row_num = row_num.view(1, im_size[0], 1, 1)
col_num = col_num.view(1, 1, im_size[1], 1)
x_norm = 2*(u+col_num)/(im_size[1]-1)-1
y_norm = 2*(v+row_num)/(im_size[0]-1)-1
xy_norm = torch.clamp(torch.cat((x_norm, y_norm), dim=3), -1, 1)
interp = nn.functional.grid_sample(image, xy_norm)
w = torch.index_select(uvm, dim=1, index=LongTensor([3*index+2]))+0.5
return interp, w, u, v
示例2: knn_indices_func_cpu
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def knn_indices_func_cpu(rep_pts : FloatTensor, # (N, pts, dim)
pts : FloatTensor, # (N, x, dim)
K : int, D : int
) -> LongTensor: # (N, pts, K)
"""
CPU-based Indexing function based on K-Nearest Neighbors search.
:param rep_pts: Representative points.
:param pts: Point cloud to get indices from.
:param K: Number of nearest neighbors to collect.
:param D: "Spread" of neighboring points.
:return: Array of indices, P_idx, into pts such that pts[n][P_idx[n],:]
is the set k-nearest neighbors for the representative points in pts[n].
"""
rep_pts = rep_pts.data.numpy()
pts = pts.data.numpy()
region_idx = []
for n, p in enumerate(rep_pts):
P_particular = pts[n]
nbrs = NearestNeighbors(D*K + 1, algorithm = "ball_tree").fit(P_particular)
indices = nbrs.kneighbors(p)[1]
region_idx.append(indices[:,1::D])
region_idx = torch.from_numpy(np.stack(region_idx, axis = 0))
return region_idx
示例3: knn_indices_func_cpu
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def knn_indices_func_cpu(rep_pts : FloatTensor, # (N, pts, dim)
pts : FloatTensor, # (N, x, dim)
K : int, D : int
) -> LongTensor: # (N, pts, K)
"""
CPU-based Indexing function based on K-Nearest Neighbors search.
:param rep_pts: Representative points.
:param pts: Point cloud to get indices from.
:param K: Number of nearest neighbors to collect.
:param D: "Spread" of neighboring points.
:return: Array of indices, P_idx, into pts such that pts[n][P_idx[n],:]
is the set k-nearest neighbors for the representative points in pts[n].
"""
if rep_pts.is_cuda:
rep_pts = rep_pts.cpu()
if pts.is_cuda:
pts = pts.cpu()
rep_pts = rep_pts.data.numpy()
pts = pts.data.numpy()
region_idx = []
for n, p in enumerate(rep_pts):
P_particular = pts[n]
nbrs = NearestNeighbors(D*K + 1, algorithm = "auto").fit(P_particular)
indices = nbrs.kneighbors(p)[1]
region_idx.append(indices[:,1::D])
region_idx = torch.from_numpy(np.stack(region_idx, axis = 0))
return region_idx
示例4: knn_indices_func_approx
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def knn_indices_func_approx(rep_pts : FloatTensor, # (N, pts, dim)
pts : FloatTensor, # (N, x, dim)
K : int, D : int
) -> LongTensor: # (N, pts, K)
"""
Approximate CPU-based Indexing function based on K-Nearest Neighbors search.
:param rep_pts: Representative points.
:param pts: Point cloud to get indices from.
:param K: Number of nearest neighbors to collect.
:param D: "Spread" of neighboring points.
:return: Array of indices, P_idx, into pts such that pts[n][P_idx[n],:]
is the set k-nearest neighbors for the representative points in pts[n].
"""
if rep_pts.is_cuda:
rep_pts = rep_pts.cpu()
if pts.is_cuda:
pts = pts.cpu()
rep_pts = rep_pts.data.numpy()
pts = pts.data.numpy()
region_idx = []
for n, p in enumerate(rep_pts):
P_particular = pts[n]
lshf = LSHForest(n_estimators = 20, n_candidates = 100, n_neighbors = D*K + 1)
lshf.fit(P_particular)
indices = lshf.kneighbors(p, return_distance = False)
region_idx.append(indices[:,1::D])
示例5: knn_indices_func_gpu
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def knn_indices_func_gpu(rep_pts : cuda.FloatTensor, # (N, pts, dim)
pts : cuda.FloatTensor, # (N, x, dim)
K : int, D : int
) -> cuda.LongTensor: # (N, pts, K)
"""
GPU-based Indexing function based on K-Nearest Neighbors search.
Very memory intensive, and thus unoptimal for large numbers of points.
:param rep_pts: Representative points.
:param pts: Point cloud to get indices from.
:param K: Number of nearest neighbors to collect.
:param D: "Spread" of neighboring points.
:return: Array of indices, P_idx, into pts such that pts[n][P_idx[n],:]
is the set k-nearest neighbors for the representative points in pts[n].
"""
region_idx = []
for n, qry in enumerate(rep_pts):
qry = qry.half()
ref = pts[n].half()
r_A = torch.sum(qry * qry, dim = 1, keepdim = True)
r_B = torch.sum(ref * ref, dim = 1, keepdim = True)
dist2 = r_A - 2 * torch.matmul(qry, torch.t(ref)) + torch.t(r_B)
_, inds = torch.topk(dist2, D*K + 1, dim = 1, largest = False)
region_idx.append(inds[:,1::D])
region_idx = torch.stack(region_idx, dim = 0)
return region_idx
示例6: knn_indices_func_gpu
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def knn_indices_func_gpu(rep_pts : cuda.FloatTensor, # (N, pts, dim)
pts : cuda.FloatTensor, # (N, x, dim)
k : int, d : int
) -> cuda.LongTensor: # (N, pts, K)
"""
GPU-based Indexing function based on K-Nearest Neighbors search.
Very memory intensive, and thus unoptimal for large numbers of points.
:param rep_pts: Representative points.
:param pts: Point cloud to get indices from.
:param K: Number of nearest neighbors to collect.
:param D: "Spread" of neighboring points.
:return: Array of indices, P_idx, into pts such that pts[n][P_idx[n],:]
is the set k-nearest neighbors for the representative points in pts[n].
"""
region_idx = []
for n, qry in enumerate(rep_pts):
ref = pts[n]
n, d = ref.size()
m, d = qry.size()
mref = ref.expand(m, n, d)
mqry = qry.expand(n, m, d).transpose(0, 1)
dist2 = torch.sum((mqry - mref)**2, 2).squeeze()
_, inds = torch.topk(dist2, k*d + 1, dim = 1, largest = False)
region_idx.append(inds[:,1::d])
region_idx = torch.stack(region_idx, dim = 0)
return region_idx
示例7: evaluate_model
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def evaluate_model(train_matrix, test_set, item_word_seq, item_neighbor_index, GAT, batch_size):
num_items, num_users = train_matrix.shape
num_batches = int(num_items / batch_size) + 1
item_indexes = np.arange(num_items)
pred_matrix = None
for batchID in range(num_batches):
start = batchID * batch_size
end = start + batch_size
if batchID == num_batches - 1:
if start < num_items:
end = num_items
else:
break
batch_item_index = item_indexes[start:end]
# get mini-batch data
batch_x = train_matrix[batch_item_index].toarray()
batch_word_seq = item_word_seq[batch_item_index]
batch_neighbor_index = item_neighbor_index[batch_item_index]
batch_item_index = Variable(torch.from_numpy(batch_item_index).type(T.LongTensor), requires_grad=False)
batch_word_seq = Variable(torch.from_numpy(batch_word_seq).type(T.LongTensor), requires_grad=False)
batch_neighbor_index = Variable(torch.from_numpy(batch_neighbor_index).type(T.LongTensor), requires_grad=False)
batch_x = Variable(torch.from_numpy(batch_x.astype(np.float32)).type(T.FloatTensor), requires_grad=False)
# Forward pass: Compute predicted y by passing x to the model
rating_pred = GAT(batch_item_index, batch_x, batch_word_seq, batch_neighbor_index)
rating_pred = rating_pred.cpu().data.numpy().copy()
if batchID == 0:
pred_matrix = rating_pred.copy()
else:
pred_matrix = np.append(pred_matrix, rating_pred, axis=0)
topk = 50
pred_matrix[train_matrix.nonzero()] = 0
pred_matrix = pred_matrix.transpose()
# reference: https://stackoverflow.com/a/23734295, https://stackoverflow.com/a/20104162
ind = np.argpartition(pred_matrix, -topk)
ind = ind[:, -topk:]
arr_ind = pred_matrix[np.arange(len(pred_matrix))[:, None], ind]
arr_ind_argsort = np.argsort(arr_ind)[np.arange(len(pred_matrix)), ::-1]
pred_list = ind[np.arange(len(pred_matrix))[:, None], arr_ind_argsort]
precision, recall, MAP, ndcg = [], [], [], []
for k in [5, 10, 15, 20, 30, 40, 50]:
precision.append(precision_at_k(test_set, pred_list, k))
recall.append(recall_at_k(test_set, pred_list, k))
MAP.append(mapk(test_set, pred_list, k))
ndcg.append(ndcg_k(test_set, pred_list, k))
return precision, recall, MAP, ndcg
示例8: forward
# 需要导入模块: from torch import cuda [as 别名]
# 或者: from torch.cuda import LongTensor [as 别名]
def forward(self, batch_item_index, place_correlation):
"""
The forward pass of the autoencoder.
:param batch_item_index: a list of arrays that each array stores the place id a user has been to
:param place_correlation: the pairwise poi relation matrix
:return: the predicted ratings
"""
item_vector = self.linear1.weight[:, T.LongTensor(batch_item_index[0].astype(np.int32))]
# Compute the neighbor inner products
inner_product = item_vector.t().mm(self.linear4.weight.t())
item_corr = Variable(
torch.from_numpy(place_correlation[batch_item_index[0]].toarray()).type(T.FloatTensor))
inner_product = inner_product * item_corr
neighbor_product = inner_product.sum(dim=0).unsqueeze(0)
# Compute the self attention score
score = F.tanh(self.attention_matrix1.mm(item_vector))
score = F.softmax(score, dim=1)
embedding_matrix = score.mm(item_vector.t())
linear_z = self.self_attention(embedding_matrix.t()).t()
# print score
for i in range(1, len(batch_item_index)):
item_vector = self.linear1.weight[:, T.LongTensor(batch_item_index[i].astype(np.int32))]
# Compute the neighbor inner products
inner_product = item_vector.t().mm(self.linear4.weight.t())
item_corr = Variable(
torch.from_numpy(place_correlation[batch_item_index[i]].toarray()).type(T.FloatTensor))
inner_product = inner_product * item_corr
inner_product = inner_product.sum(dim=0).unsqueeze(0)
neighbor_product = torch.cat((neighbor_product, inner_product), 0)
# Compute the self attention score
score = F.tanh(self.attention_matrix1.mm(item_vector))
score = F.softmax(score, dim=1)
embedding_matrix = score.mm(item_vector.t())
tmp_z = self.self_attention(embedding_matrix.t()).t()
linear_z = torch.cat((linear_z, tmp_z), 0)
z = F.tanh(linear_z)
z = F.dropout(z, training=self.training, p=self.dropout_rate)
z = F.tanh(self.linear2(z))
z = F.dropout(z, training=self.training, p=self.dropout_rate)
d_z = F.tanh(self.linear3(z))
d_z = F.dropout(d_z, training=self.training, p=self.dropout_rate)
y_pred = F.sigmoid(self.linear4(d_z) + neighbor_product)
return y_pred