本文整理汇总了Python中torch.cos方法的典型用法代码示例。如果您正苦于以下问题:Python torch.cos方法的具体用法?Python torch.cos怎么用?Python torch.cos使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.cos方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def __init__(self, height, width, lr = 1, aux_loss = False):
super(DenseAffine3DGridGen, self).__init__()
self.height, self.width = height, width
self.aux_loss = aux_loss
self.lr = lr
self.grid = np.zeros( [self.height, self.width, 3], dtype=np.float32)
self.grid[:,:,0] = np.expand_dims(np.repeat(np.expand_dims(np.arange(-1, 1, 2.0/self.height), 0), repeats = self.width, axis = 0).T, 0)
self.grid[:,:,1] = np.expand_dims(np.repeat(np.expand_dims(np.arange(-1, 1, 2.0/self.width), 0), repeats = self.height, axis = 0), 0)
self.grid[:,:,2] = np.ones([self.height, width])
self.grid = torch.from_numpy(self.grid.astype(np.float32))
self.theta = self.grid[:,:,0] * np.pi/2 + np.pi/2
self.phi = self.grid[:,:,1] * np.pi
self.x = torch.sin(self.theta) * torch.cos(self.phi)
self.y = torch.sin(self.theta) * torch.sin(self.phi)
self.z = torch.cos(self.theta)
self.grid3d = torch.from_numpy(np.zeros( [self.height, self.width, 4], dtype=np.float32))
self.grid3d[:,:,0] = self.x
self.grid3d[:,:,1] = self.y
self.grid3d[:,:,2] = self.z
self.grid3d[:,:,3] = self.grid[:,:,2]
示例2: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def __init__(
self,
classes,
m=0.5,
s=64,
easy_margin=True,
weight=None,
size_average=None,
ignore_index=-100,
reduce=None,
reduction='mean'):
super(ArcLoss, self).__init__(weight, size_average, reduce, reduction)
self.ignore_index = ignore_index
assert s > 0.
assert 0 <= m <= (math.pi / 2)
self.s = s
self.m = m
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.mm = math.sin(math.pi - m) * m
self.threshold = math.cos(math.pi - m)
self.classes = classes
self.easy_margin = easy_margin
示例3: _get_body
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def _get_body(self, x, target):
cos_t = torch.gather(x, 1, target.unsqueeze(1)) # cos(theta_yi)
if self.easy_margin:
cond = torch.relu(cos_t)
else:
cond_v = cos_t - self.threshold
cond = torch.relu(cond_v)
cond = cond.bool()
# Apex would convert FP16 to FP32 here
# cos(theta_yi + m)
new_zy = torch.cos(torch.acos(cos_t) + self.m).type(cos_t.dtype)
if self.easy_margin:
zy_keep = cos_t
else:
zy_keep = cos_t - self.mm # (cos(theta_yi) - sin(pi - m)*m)
new_zy = torch.where(cond, new_zy, zy_keep)
diff = new_zy - cos_t # cos(theta_yi + m) - cos(theta_yi)
gt_one_hot = F.one_hot(target, num_classes=self.classes)
body = gt_one_hot * diff
return body
示例4: _feature_window_function
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def _feature_window_function(window_type: str,
window_size: int,
blackman_coeff: float,
device: torch.device,
dtype: int,
) -> Tensor:
r"""Returns a window function with the given type and size
"""
if window_type == HANNING:
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype)
elif window_type == HAMMING:
return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype)
elif window_type == POVEY:
# like hanning but goes to zero at edges
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85)
elif window_type == RECTANGULAR:
return torch.ones(window_size, device=device, dtype=dtype)
elif window_type == BLACKMAN:
a = 2 * math.pi / (window_size - 1)
window_function = torch.arange(window_size, device=device, dtype=dtype)
# can't use torch.blackman_window as they use different coefficients
return (blackman_coeff - 0.5 * torch.cos(a * window_function) +
(0.5 - blackman_coeff) * torch.cos(2 * a * window_function)).to(device=device, dtype=dtype)
else:
raise Exception('Invalid window type ' + window_type)
示例5: _create_data_set
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def _create_data_set(self):
# used to generate the dataset to test on. this is not used in testing (offline procedure)
test_filepath = common_utils.get_asset_path('kaldi_file.wav')
sr = 16000
x = torch.arange(0, 20).float()
# between [-6,6]
y = torch.cos(2 * math.pi * x) + 3 * torch.sin(math.pi * x) + 2 * torch.cos(x)
# between [-2^30, 2^30]
y = (y / 6 * (1 << 30)).long()
# clear the last 16 bits because they aren't used anyways
y = ((y >> 16) << 16).float()
torchaudio.save(test_filepath, y, sr)
sound, sample_rate = torchaudio.load(test_filepath, normalization=False)
print(y >> 16)
self.assertTrue(sample_rate == sr)
torch.testing.assert_allclose(y, sound)
示例6: get_sinusoid_encoding_table
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
''' Sinusoid position encoding table '''
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
if padding_idx is not None:
# zero vector for padding dimension
sinusoid_table[padding_idx] = 0.
return torch.FloatTensor(sinusoid_table)
示例7: positional_encodings_like
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def positional_encodings_like(x, t=None):
if t is None:
positions = torch.arange(0., x.size(1))
if x.is_cuda:
positions = positions.cuda(x.get_device())
else:
positions = t
encodings = torch.zeros(*x.size()[1:])
if x.is_cuda:
encodings = encodings.cuda(x.get_device())
for channel in range(x.size(-1)):
if channel % 2 == 0:
encodings[:, channel] = torch.sin(
positions / 10000 ** (channel / x.size(2)))
else:
encodings[:, channel] = torch.cos(
positions / 10000 ** ((channel - 1) / x.size(2)))
return Variable(encodings)
# torch.matmul can't do (4, 3, 2) @ (4, 2) -> (4, 3)
示例8: get_embedding
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
示例9: warmup_cosine
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def warmup_cosine(x, warmup=0.002):
if x < warmup:
return x/warmup
return 0.5 * (1.0 + torch.cos(math.pi * x))
示例10: __init__
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
示例11: warmup_cosine
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def warmup_cosine(x, warmup=0.002):
s = 1 if x <= warmup else 0
return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x)))
示例12: create_dct
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def create_dct(
n_mfcc: int,
n_mels: int,
norm: Optional[str]
) -> Tensor:
r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
normalized depending on norm.
Args:
n_mfcc (int): Number of mfc coefficients to retain
n_mels (int): Number of mel filterbanks
norm (str or None): Norm to use (either 'ortho' or None)
Returns:
Tensor: The transformation matrix, to be right-multiplied to
row-wise data of size (``n_mels``, ``n_mfcc``).
"""
# http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
n = torch.arange(float(n_mels))
k = torch.arange(float(n_mfcc)).unsqueeze(1)
dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels)
if norm is None:
dct *= 2.0
else:
assert norm == "ortho"
dct[0] *= 1.0 / math.sqrt(2.0)
dct *= math.sqrt(2.0 / float(n_mels))
return dct.t()
示例13: highpass_biquad
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def highpass_biquad(
waveform: Tensor,
sample_rate: int,
cutoff_freq: float,
Q: float = 0.707
) -> Tensor:
r"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform dimension of `(..., time)`
"""
w0 = 2 * math.pi * cutoff_freq / sample_rate
alpha = math.sin(w0) / 2. / Q
b0 = (1 + math.cos(w0)) / 2
b1 = -1 - math.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)
示例14: lowpass_biquad
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def lowpass_biquad(
waveform: Tensor,
sample_rate: int,
cutoff_freq: float,
Q: float = 0.707
) -> Tensor:
r"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0 = 2 * math.pi * cutoff_freq / sample_rate
alpha = math.sin(w0) / 2 / Q
b0 = (1 - math.cos(w0)) / 2
b1 = 1 - math.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)
示例15: bandpass_biquad
# 需要导入模块: import torch [as 别名]
# 或者: from torch import cos [as 别名]
def bandpass_biquad(
waveform: Tensor,
sample_rate: int,
central_freq: float,
Q: float = 0.707,
const_skirt_gain: bool = False
) -> Tensor:
r"""Design two-pole band-pass filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
const_skirt_gain (bool, optional) : If ``True``, uses a constant skirt gain (peak gain = Q).
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0 = 2 * math.pi * central_freq / sample_rate
alpha = math.sin(w0) / 2 / Q
temp = math.sin(w0) / 2 if const_skirt_gain else alpha
b0 = temp
b1 = 0.
b2 = -temp
a0 = 1 + alpha
a1 = -2 * math.cos(w0)
a2 = 1 - alpha
return biquad(waveform, b0, b1, b2, a0, a1, a2)