本文整理汇总了Python中torch.clone方法的典型用法代码示例。如果您正苦于以下问题:Python torch.clone方法的具体用法?Python torch.clone怎么用?Python torch.clone使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch
的用法示例。
在下文中一共展示了torch.clone方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: step
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
p.data.add_(-group['lr'], d_p)
return loss
示例2: empty
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def empty(shape, dtype=types.float32, split=None, device=None, comm=None, order="C"):
"""
Returns a new uninitialized array of given shape and data type. May be allocated split up across multiple
nodes along the specified axis.
Parameters
----------
shape : int or sequence of ints
Desired shape of the output array, e.g. 1 or (1, 2, 3,).
dtype : ht.dtype
The desired HeAT data type for the array, defaults to ht.float32.
split: int, optional
The axis along which the array is split and distributed, defaults to None (no distribution).
device : str, ht.Device or None, optional
Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device).
comm: Communication, optional
Handle to the nodes holding distributed parts or copies of this tensor.
order: str, optional
Options: 'C' or 'F'. Specifies the memory layout of the newly created tensor. Default is order='C', meaning the array
will be stored in row-major order (C-like). If order=‘F’, the array will be stored in column-major order (Fortran-like).
Raises NotImplementedError for NumPy options 'K' and 'A'.
#TODO: implement 'K' option when torch.clone() fix to preserve memory layout is released.
Returns
-------
out : ht.DNDarray
Array of zeros with given shape, data type and node distribution.
Examples
--------
>>> ht.empty(3)
tensor([ 0.0000e+00, -2.0000e+00, 3.3113e+35])
>>> ht.empty(3, dtype=ht.int)
tensor([ 0.0000e+00, -2.0000e+00, 3.3113e+35])
>>> ht.empty((2, 3,))
tensor([[ 0.0000e+00, -2.0000e+00, 3.3113e+35],
[ 3.6902e+19, 1.2096e+04, 7.1846e+22]])
"""
return __factory(shape, dtype, split, torch.empty, device, comm, order)
示例3: zeros_like
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def zeros_like(a, dtype=None, split=None, device=None, comm=None, order="C"):
"""
Returns a new array filled with zeros with the same type, shape and data distribution of given object. Data type and
data distribution strategy can be explicitly overriden.
Parameters
----------
a : object
The shape and data-type of 'a' define these same attributes of the returned array.
dtype : ht.dtype, optional
Overrides the data type of the result.
split: int, optional
The axis along which the array is split and distributed, defaults to None (no distribution).
device : str, ht.Device or None, optional
Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device).
comm: Communication, optional
Handle to the nodes holding distributed parts or copies of this tensor.
order: str, optional
Options: 'C' or 'F'. Specifies the memory layout of the newly created tensor. Default is order='C', meaning the array
will be stored in row-major order (C-like). If order=‘F’, the array will be stored in column-major order (Fortran-like).
Raises NotImplementedError for NumPy options 'K' and 'A'.
#TODO: implement 'K' option when torch.clone() fix to preserve memory layout is released.
Returns
-------
out : ht.DNDarray
Array of zeros with the same shape, type and split axis as 'a' unless overriden.
Examples
--------
>>> x = ht.ones((2, 3,))
>>> x
tensor([[1., 1., 1.],
[1., 1., 1.]])
>>> ht.zeros_like(x)
tensor([[0., 0., 0.],
[0., 0., 0.]])
"""
return __factory_like(a, dtype, split, zeros, device, comm, order=order)
示例4: step
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
for p in group["params"]:
if p.grad is None:
continue
d_p = p.grad.data
if momentum != 0:
param_state = self.state[p]
if "momentum_buffer" not in param_state:
buf = param_state["momentum_buffer"] = torch.clone(d_p).detach()
else:
buf = param_state["momentum_buffer"]
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# Apply weight decay. THE ONLY DIFFERENCE IS HERE
if group["weight_decay"] != 0:
p.data.mul_(1 - group["lr"] * group["weight_decay"])
# Apply momentum
p.data.add_(-group["lr"], d_p)
return loss
示例5: clone_parameters
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def clone_parameters(param_list):
return [p.clone() for p in param_list]
示例6: detach_module
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def detach_module(module):
"""
[[Source]](https://github.com/learnables/learn2learn/blob/master/learn2learn/utils.py)
**Description**
Detaches all parameters/buffers of a previously cloned module from its computational graph.
Note: detach works in-place, so it does not return a copy.
**Arguments**
* **module** (Module) - Module to be detached.
**Example**
~~~python
net = nn.Sequential(Linear(20, 10), nn.ReLU(), nn.Linear(10, 2))
clone = clone_module(net)
detach_module(clone)
error = loss(clone(X), y)
error.backward() # Gradients are back-propagate on clone, not net.
~~~
"""
if not isinstance(module, torch.nn.Module):
return
# First, re-write all parameters
for param_key in module._parameters:
if module._parameters[param_key] is not None:
detached = module._parameters[param_key].detach_()
# Second, handle the buffers if necessary
for buffer_key in module._buffers:
if module._buffers[buffer_key] is not None and \
module._buffers[buffer_key].requires_grad:
module._buffers[buffer_key] = module._buffers[buffer_key].detach_()
# Then, recurse for each submodule
for module_key in module._modules:
detach_module(module._modules[module_key])
示例7: clone_distribution
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def clone_distribution(dist):
# TODO: This function was never tested.
clone = copy.deepcopy(dist)
for param_key in clone.__dict__:
item = clone.__dict__[param_key]
if isinstance(item, th.Tensor):
if item.requires_grad:
clone.__dict__[param_key] = dist.__dict__[param_key].clone()
elif isinstance(item, th.nn.Module):
clone.__dict__[param_key] = clone_module(dist.__dict__[param_key])
elif isinstance(item, th.Distribution):
clone.__dict__[param_key] = clone_distribution(dist.__dict__[param_key])
return clone
示例8: nnef_copy_n
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def nnef_copy_n(x, times):
# type: (torch.Tensor, int)->List[torch.Tensor]
return [x.clone() for _ in range(times)]
示例9: step
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
# uncertainty = group['uncertaintsy']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
if isinstance(group['lr'], torch.Tensor):
p.data = p.data + torch.mul(-group['lr'].data, d_p)
else:
p.data.add_(-group['lr'], d_p)
return loss
示例10: __factory_like
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def __factory_like(a, dtype, split, factory, device, comm, order="C", **kwargs):
"""
Abstracted '...-like' factory function for HeAT tensor initialization
Parameters
----------
a : object
The shape and data-type of 'a' define these same attributes of the returned array.
dtype : ht.dtype
The desired HeAT data type for the array, defaults to ht.float32.
split: int, optional
The axis along which the array is split and distributed, defaults to None (no distribution).
factory : function
Function that creates a HeAT tensor.
device : str or None
Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device).
comm: Communication
Handle to the nodes holding distributed parts or copies of this tensor.
order: str, optional
Options: 'C' or 'F'. Specifies the memory layout of the newly created tensor. Default is order='C', meaning the array
will be stored in row-major order (C-like). If order=‘F’, the array will be stored in column-major order (Fortran-like).
Raises NotImplementedError for NumPy options 'K' and 'A'.
#TODO: implement 'K' option when torch.clone() fix to preserve memory layout is released.
Returns
-------
out : ht.DNDarray
Array of ones with given shape, data type and node distribution that is like a
"""
# determine the global shape of the object to create
# attempt in this order: shape property, length of object or default shape (1,)
try:
shape = a.shape
except AttributeError:
try:
shape = (len(a),)
except TypeError:
shape = (1,)
# infer the data type, otherwise default to float32
if dtype is None:
try:
dtype = types.heat_type_of(a)
except TypeError:
dtype = types.float32
# infer split axis
if split is None:
try:
split = a.split if not isinstance(a, str) else None
except AttributeError:
# do not split at all
pass
# use the default communicator, if not set
comm = sanitize_comm(comm)
return factory(shape, dtype=dtype, split=split, device=device, comm=comm, order=order, **kwargs)
示例11: ones
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def ones(shape, dtype=types.float32, split=None, device=None, comm=None, order="C"):
"""
Returns a new array of given shape and data type filled with one values. May be allocated split up across multiple
nodes along the specified axis.
Parameters
----------
shape : int or sequence of ints
Desired shape of the output array, e.g. 1 or (1, 2, 3,).
dtype : ht.dtype
The desired HeAT data type for the array, defaults to ht.float32.
split : int, optional
The axis along which the array is split and distributed, defaults to None (no distribution).
device : str, ht.Device or None, optional
Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device).
comm : Communication, optional
Handle to the nodes holding distributed parts or copies of this tensor.
order: str, optional
Options: 'C' or 'F'. Specifies the memory layout of the newly created tensor. Default is order='C', meaning the array
will be stored in row-major order (C-like). If order=‘F’, the array will be stored in column-major order (Fortran-like).
Raises NotImplementedError for NumPy options 'K' and 'A'.
#TODO: implement 'K' option when torch.clone() fix to preserve memory layout is released.
Returns
-------
out : ht.DNDarray
Array of ones with given shape, data type and node distribution.
Examples
--------
>>> ht.ones(3)
tensor([1., 1., 1.])
>>> ht.ones(3, dtype=ht.int)
tensor([1, 1, 1])
>>> ht.ones((2, 3,))
tensor([[1., 1., 1.],
[1., 1., 1.]])
"""
return __factory(shape, dtype, split, torch.ones, device, comm, order)
示例12: zeros
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def zeros(shape, dtype=types.float32, split=None, device=None, comm=None, order="C"):
"""
Returns a new array of given shape and data type filled with zero values. May be allocated split up across multiple
nodes along the specified axis.
Parameters
----------
shape : int or sequence of ints
Desired shape of the output array, e.g. 1 or (1, 2, 3,).
dtype : ht.dtype
The desired HeAT data type for the array, defaults to ht.float32.
split: int, optional
The axis along which the array is split and distributed, defaults to None (no distribution).
device : str, ht.Device or None, optional
Specifies the device the tensor shall be allocated on, defaults to None (i.e. globally set default device).
comm: Communication, optional
Handle to the nodes holding distributed parts or copies of this tensor.
order: str, optional
Options: 'C' or 'F'. Specifies the memory layout of the newly created tensor. Default is order='C', meaning the array
will be stored in row-major order (C-like). If order=‘F’, the array will be stored in column-major order (Fortran-like).
Raises NotImplementedError for NumPy options 'K' and 'A'.
#TODO: implement 'K' option when torch.clone() fix to preserve memory layout is released.
Returns
-------
out : ht.DNDarray
Array of zeros with given shape, data type and node distribution.
Examples
--------
>>> ht.zeros(3)
tensor([0., 0., 0.])
>>> ht.zeros(3, dtype=ht.int)
tensor([0, 0, 0])
>>> ht.zeros((2, 3,))
tensor([[0., 0., 0.],
[0., 0., 0.]])
"""
return __factory(shape, dtype, split, torch.zeros, device, comm, order=order)
示例13: sanitize_memory_layout
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def sanitize_memory_layout(x, order="C"):
"""
Return the given object with memory layout as defined below. The default memory distribution is assumed.
Parameters
-----------
x: torch.tensor
Input data
order: str, optional.
Default is 'C' as in C-like (row-major) memory layout. The array is stored first dimension first (rows first if ndim=2).
Alternative is 'F', as in Fortran-like (column-major) memory layout. The array is stored last dimension first (columns first if ndim=2).
"""
if order == "K":
raise NotImplementedError(
"Internal usage of torch.clone() means losing original memory layout for now. \n Please specify order='C' for row-major, order='F' for column-major layout."
)
if x.ndim < 2 or x.numel() == 0:
# do nothing
return x
dims = list(range(x.ndim))
stride = torch.tensor(x.stride())
# since strides can get a bit wonky with operations like transpose
# we should assume that the tensors are row major or are distributed the default way
sdiff = stride[1:] - stride[:-1]
column_major = all(sdiff >= 0)
row_major = True if not column_major else False
if (order == "C" and row_major) or (order == "F" and column_major):
# do nothing
return x
elif (order == "C" and column_major) or (order == "F" and row_major):
dims = tuple(reversed(dims))
y = torch.empty_like(x)
permutation = x.permute(dims).contiguous()
y = y.set_(
permutation.storage(),
x.storage_offset(),
x.shape,
tuple(reversed(permutation.stride())),
)
return y
else:
raise ValueError(
"combination of order and layout not permitted, order: {} column major: {} row major: {}".format(
order, column_major, row_major
)
)
示例14: step
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def step(self, grad_quantizer, grad_clip, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# quantize gradient for both weights and biases
d_p = grad_quantizer(d_p, group['lr'])
p.data.add_(-d_p)
p.data = grad_clip(p.data)
# p.data.add_(-group['lr'], d_p)
return loss
示例15: step
# 需要导入模块: import torch [as 别名]
# 或者: from torch import clone [as 别名]
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
if weight_decay != 0:
d_p.add_(weight_decay, p.data)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(1 - dampening, d_p)
if nesterov:
d_p = d_p.add(momentum, buf)
else:
d_p = buf
# LARS
p_norm = p.data.pow(2).sum().sqrt()
update_norm = d_p.pow(2).sum().sqrt()
# Compute the local LR
if p_norm == 0 or update_norm == 0:
local_lr = 1
else:
local_lr = p_norm / update_norm
p.data.add_(-group['lr'] * local_lr, d_p)
return loss