本文整理汇总了Python中torch.backends.cudnn.deterministic方法的典型用法代码示例。如果您正苦于以下问题:Python cudnn.deterministic方法的具体用法?Python cudnn.deterministic怎么用?Python cudnn.deterministic使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.backends.cudnn
的用法示例。
在下文中一共展示了cudnn.deterministic方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
hvd.init()
local_rank = hvd.local_rank()
torch.cuda.set_device(local_rank)
main_worker(local_rank, 4, args)
示例2: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
# torch.backends.cudnn.enabled = False
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
args.local_rank = int(os.environ["SLURM_PROCID"])
args.world_size = int(os.environ["SLURM_NPROCS"])
ngpus_per_node = torch.cuda.device_count()
job_id = os.environ["SLURM_JOBID"]
args.dist_url = "file://{}.{}".format(os.path.realpath(args.dist_file), job_id)
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
示例3: init_rand
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def init_rand(seed):
"""
Initialize all random generators by seed.
Parameters:
----------
seed : int
Seed value.
Returns
-------
int
Generated seed value.
"""
if seed <= 0:
seed = np.random.randint(10000)
else:
cudnn.deterministic = True
logging.warning(
"You have chosen to seed training. This will turn on the CUDNN deterministic setting, which can slow down "
"your training considerably! You may see unexpected behavior when restarting from checkpoints.")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
return seed
示例4: automated_deep_compression
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def automated_deep_compression(model, criterion, loggers, args):
import examples.automated_deep_compression.ADC as ADC
HAVE_COACH_INSTALLED = True
if not HAVE_COACH_INSTALLED:
raise ValueError("ADC is currently experimental and uses non-public Coach features")
if not isinstance(loggers, list):
loggers = [loggers]
train_loader, val_loader, test_loader, _ = apputils.load_data(
args.dataset, os.path.expanduser(args.data), args.batch_size,
args.workers, args.validation_size, args.deterministic)
args.display_confusion = True
validate_fn = partial(validate, val_loader=test_loader, criterion=criterion,
loggers=loggers, args=args)
if args.ADC_params is not None:
ADC.summarize_experiment(args.ADC_params, args.dataset, args.arch, validate_fn)
exit()
save_checkpoint_fn = partial(apputils.save_checkpoint, arch=args.arch, dir=msglogger.logdir)
ADC.do_adc(model, args.dataset, args.arch, val_loader, validate_fn, save_checkpoint_fn)
示例5: init
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def init():
global args, logger, writer
args = get_parser()
logger = get_logger()
writer = SummaryWriter(args.save_path)
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.train_gpu)
if args.manual_seed is not None:
cudnn.benchmark = False
cudnn.deterministic = True
torch.manual_seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
if len(args.train_gpu) == 1:
args.sync_bn = False
logger.info(args)
示例6: set_random_seed
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def set_random_seed(random_seed):
if random_seed is not None:
print("Set random seed as {}".format(random_seed))
os.environ['PYTHONHASHSEED'] = str(random_seed)
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.set_num_threads(1)
cudnn.benchmark = False
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
示例7: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main(args: Namespace) -> None:
model = ImageNetLightningModel(**vars(args))
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
trainer = pl.Trainer(
default_root_dir=args.save_path,
gpus=args.gpus,
max_epochs=args.epochs,
distributed_backend=args.distributed_backend,
precision=16 if args.use_16bit else 32,
)
if args.evaluate:
trainer.run_evaluation()
else:
trainer.fit(model)
示例8: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main(args):
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('=> load data...')
corpus = data.Corpus(args.data)
eval_batch_size = 10
train_loader = batchify(corpus.train, args.batch_size, device)
val_loader = batchify(corpus.valid, eval_batch_size, device)
ntokens = len(corpus.dictionary)
main_worker(train_loader, val_loader, ntokens, args, device)
示例9: prepare_cudnn
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def prepare_cudnn(deterministic: bool = None, benchmark: bool = None) -> None:
"""
Prepares CuDNN benchmark and sets CuDNN
to be deterministic/non-deterministic mode
Args:
deterministic (bool): deterministic mode if running in CuDNN backend.
benchmark (bool): If ``True`` use CuDNN heuristics to figure out
which algorithm will be most performant
for your model architecture and input.
Setting it to ``False`` may slow down your training.
"""
if torch.cuda.is_available():
# CuDNN reproducibility
# https://pytorch.org/docs/stable/notes/randomness.html#cudnn
if deterministic is None:
deterministic = (
os.environ.get("CUDNN_DETERMINISTIC", "True") == "True"
)
cudnn.deterministic = deterministic
# https://discuss.pytorch.org/t/how-should-i-disable-using-cudnn-in-my-code/38053/4
if benchmark is None:
benchmark = os.environ.get("CUDNN_BENCHMARK", "True") == "True"
cudnn.benchmark = benchmark
示例10: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
args = parser.parse_args()
args.store_name = '_'.join([args.dataset, args.arch, args.loss_type, args.train_rule, args.imb_type, str(args.imb_factor), args.exp_str])
prepare_folders(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = torch.cuda.device_count()
main_worker(args.gpu, ngpus_per_node, args)
示例11: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
gpus = [0, 1, 2, 3]
main_worker(gpus=gpus, args=args)
示例12: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
main_worker(args.local_rank, 4, args)
示例13: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
args = parser.parse_args()
if(not os.path.exists(os.path.join(args.save_folder, args.dataset, args.network))):
os.makedirs(os.path.join(args.save_folder, args.dataset, args.network))
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
os.environ['WORLD_SIZE'] = '2'
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
示例14: init_rand
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def init_rand(seed):
if seed <= 0:
seed = np.random.randint(10000)
else:
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
return seed
示例15: main
# 需要导入模块: from torch.backends import cudnn [as 别名]
# 或者: from torch.backends.cudnn import deterministic [as 别名]
def main():
if not torch.cuda.is_available():
logging.info('No GPU found!')
sys.exit(1)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
cudnn.enabled = True
cudnn.benchmark = False
cudnn.deterministic = True
args.steps = int(np.ceil(50000 / args.batch_size)) * args.epochs
logging.info("Args = %s", args)
_, model_state_dict, epoch, step, optimizer_state_dict, best_acc_top1 = utils.load(args.output_dir)
build_fn = get_builder(args.dataset)
train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler = build_fn(model_state_dict, optimizer_state_dict, epoch=epoch-1)
while epoch < args.epochs:
scheduler.step()
logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0])
train_acc, train_obj, step = train(train_queue, model, optimizer, step, train_criterion)
logging.info('train_acc %f', train_acc)
valid_acc_top1, valid_obj = valid(valid_queue, model, eval_criterion)
logging.info('valid_acc %f', valid_acc_top1)
epoch += 1
is_best = False
if valid_acc_top1 > best_acc_top1:
best_acc_top1 = valid_acc_top1
is_best = True
utils.save(args.output_dir, args, model, epoch, step, optimizer, best_acc_top1, is_best)